Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Strong LP formulations for scheduling splittable jobs on unrelated machines

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

A natural extension of the makespan minimization problem on unrelated machines is to allow jobs to be partially processed by different machines while incurring an arbitrary setup time. In this paper we present increasingly stronger LP-relaxations for this problem and their implications on the approximability of the problem. First we show that the straightforward LP, extending the approach for the original problem, has an integrality gap of 3 and yields an approximation algorithm of the same factor. By applying a lift-and-project procedure, we are able to improve both the integrality gap and the implied approximation factor to \(1+\phi \), where \(\phi \) is the golden ratio. Since this bound remains tight for the seemingly stronger machine configuration LP, we propose a new job configuration LP that is based on an infinite continuum of fractional assignments of each job to the machines. We prove that this LP has a finite representation and can be solved in polynomial time up to any accuracy. Interestingly, we show that our problem cannot be approximated within a factor better than \(\frac{e}{e-1}\approx 1.582\, (\hbox {unless } \mathcal {P}=\mathcal {NP})\), which is larger than the inapproximability bound of 1.5 for the original problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187, 985–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. ACM Trans. Algorithms 8, 24:1–24:9 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC, pp. 31–40 (2006)

  4. Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. J. Sched. 9, 299–310 (2006)

    Article  MathSciNet  Google Scholar 

  5. Correa, J.R., Verdugo, V., Verschae, J.: Approximation algorithms for scheduling splitting jobs with setup times (2013). Talk in MAPSP

  6. Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. Algorithmica 68, 62–80 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U.: A threshold of \(\log (n)\) for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293 (2008)

  9. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  11. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the Lovász local lemma. J. ACM 58(28), 1–28 (2011)

    Article  MathSciNet  Google Scholar 

  12. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22, 463–468 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kim, D.W., Na, D.G., Frank Chen, F.: Unrelated parallel machine scheduling with setup times and a total weighted tardiness objective. Robot. Comut. Integr. Manuf. 19, 173–181 (2003)

    Article  Google Scholar 

  14. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release dates and preemption penalties. J. Sched. 7, 313–327 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optimiz. 1, 166–190 (1991)

    Article  MATH  Google Scholar 

  17. Polacek, L., Svensson, O.: Quasi-polynomial local search for restricted max-min fair allocation. In: ICALP, pp. 726–737 (2012)

  18. Potts, C.N., Wassenhove, L.N.V.: Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity. J. Oper. Res. Soc. 43, 395–406 (1992)

    Article  MATH  Google Scholar 

  19. Schalekamp, F., Sitters, R., van der Ster, S., Stougie, L., Verdugo, V., van Zuylen, A.: Split scheduling with uniform setup times. J. Sched. 1–11 (2014). doi:10.1007/s10951-014-0370-4

  20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  21. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup times. In: SODA, pp. 759–767 (1999)

  22. Serafini, P.: Scheduling jobs on several machines with the job splitting property. Oper. Res. 44, 617–628 (1996)

    Article  MATH  Google Scholar 

  23. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41, 1318–1341 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sviridenko, M., Wiese, A.: Approximating the configuration-lp for minimizing weighted sum of completion times on unrelated machines. IPCO 2013, 387–398 (2013)

    MathSciNet  Google Scholar 

  25. van der Ster, S.: The allocation of scarce resources in disaster relief (2010). MSc-Thesis in Operations Research at VU University Amsterdam

  26. Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines. J. Sched. 7, 371–383 (2014)

    Article  MathSciNet  Google Scholar 

  27. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  28. Xing, W., Zhang, J.: Parallel machine scheduling with splitting jobs. Discrete Appl. Math. 103, 259–269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous referees for their insightful remarks, which helped improving the presentation of Sects. 4 and 6. This work was partially supported by Nucleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F, by EU-IRSES Grant EUSACOU, by the DFG Priority Programme “Algorithm Engineering” (SPP 1307), by ERC Starting Grant 335288-OptApprox, by FONDECYT Project 3130407, by the Berlin Mathematical School and by the Tinbergen Institute and ABRI-VU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leen Stougie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, J., Marchetti-Spaccamela, A., Matuschke, J. et al. Strong LP formulations for scheduling splittable jobs on unrelated machines. Math. Program. 154, 305–328 (2015). https://doi.org/10.1007/s10107-014-0831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0831-8

Mathematics Subject Classification

Navigation