Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On second-order Fritz John type optimality conditions in nonsmooth multiobjective programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study a multiobjective optimization program with a feasible set defined by equality constraints and a generalized inequality constraint. We suppose that the functions involved are Fréchet differentiable and their Fréchet derivatives are continuous or stable at the point considered. We provide necessary second order optimality conditions and also sufficient conditions via a Fritz John type Lagrange multiplier rule and a set-valued second order directional derivative, in such a way that our sufficient conditions are close to the necessary conditions. Some consequences are obtained for parabolic directionally differentiable functions and C 1,1 functions, in this last case, expressed by means of the second order Clarke subdifferential. Some illustrative examples are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P., Frankowska H.: Set-valued analysis. Birkhaüser, Boston (1990)

    MATH  Google Scholar 

  2. Bednařík D., Pastor K.: On second-order conditions in unconstrained optimization. Math. Program. 113, 283–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Tal A., Zowe J.: A unified theory of first and second order conditions for extremum problems in topological vector spaces. Math. Program. Stud. 19, 39–76 (1982)

    MathSciNet  Google Scholar 

  4. Ben-Tal A., Zowe J.: Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems. Math. Program. 24, 70–91 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Tal A., Zowe J.: Directional derivatives in nonsmooth optimization. J. Optim. Theory Appl. 47, 483–490 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonnans J.F., Cominetti R., Shapiro A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonnans J.F., Shapiro A.: Perturbation analysis of optimization problems. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  8. Castellani M., Pappalardo M.: Local second-order approximations and applications in optimization. Optimization 37, 305–321 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cominetti R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dubovitskii, A.Y., Milyutin, A.A.: Extremum problems in the presence of restrictions. U.S.S.R. Comput. Math. Math. Phys. 5, 1–80 (1965), translation from Zh. Vychisl. Mat. Mat. Fiz. 5, 395–453 (1965)

  11. Georgiev P.G., Zlateva N.P.: Second order subdifferentials of C 1,1 functions and optimality conditions. Set-Valued Anal. 4, 101–117 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gfrerer H.: Second-Order optimality conditions for scalar and vector optimization problems in Banach spaces. SIAM J. Control Optim. 45, 972–997 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ginchev I., Guerraggio A., Rocca M.: Second-order conditions in C 1,1 constrained vector optimization. Math. Program. 104(2–3), 389–405 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ginchev I., Guerraggio A., Rocca M.: From scalar to vector optimization. Appl. Math. 51, 5–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ginchev, I., Guerraggio, A., Rocca, M.: Second-order conditions in C 1,1 vector optimization with inequality and equality constraints. In: Seeger, A. (ed.) Recent Advances in Optimization, Lecture Notes in Econom. and Math. Systems 563, pp. 29–44. Springer-Verlag, Berlin (2006)

  16. Ginchev I., Ivanov V.: Second-order optimality conditions for problems with C 1 data. J. Math. Anal. Appl. 340, 646–657 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guerraggio A., Luc D.T.: Optimality conditions for C 1,1 vector optimization problems. J. Optim. Theory Appl. 109, 615–629 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guerraggio A., Luc D.T.: Optimality conditions for C 1,1 constrained multiobjective problems. J. Optim. Theory Appl. 116, 117–129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hiriart-Urruty J.B., Strodiot J.J., Nguyen V.H.: Generalized hessian matrix and second-order optimality conditions for problems with C 1,1 data. Appl. Math. Optim. 11, 43–54 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jahn J., Khan A.A., Zeilinger P.: Second-order optimality conditions in set optimization. J. Optim. Theory Appl. 125, 331–347 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiménez B.: Strict efficiency in vector optimization. J. Math. Anal. Appl. 265, 264–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiménez B., Novo V.: First and second order sufficient conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284, 496–510 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jiménez B., Novo V.: Second order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58, 299–317 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jiménez B., Novo V.: Optimality conditions in differentiable vector optimization via second-order tangent sets. Appl. Math. Optim. 49, 123–144 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Kawasaki H.: An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems. Math. Program. 41, 73–96 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Khanh P.Q., Tuan N.D.: Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. J. Optim. Theory Appl. 133, 341–357 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Klatte D., Tammer D.: On second-order sufficient optimality conditions for C 1,1 optimizations problems. Optimization 19, 169–179 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu L., Křížek M.: The second order optimality conditions for nonlinear mathematical programming with C 1,1 data. Appl. Math. 42, 311–320 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu L., Neittaanmäki P., Křížek M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with C 1,1 data. Appl. Math. 45, 381–397 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Maruyama Y.: Second-order necessary conditions for nonlinear optimization problems in Banach spaces and their application to an optimal control problem. Math. Oper. Res. 15, 467–482 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Maruyama Y.: Second-order necessary conditions for nonlinear optimization problems in Banach spaces by the use of Neustadt derivative. Math. Japon. 40, 509–522 (1994)

    MATH  MathSciNet  Google Scholar 

  32. Penot J.P.: Optimality conditions in mathematical programming and composite optimization. Math. Program. 67, 225–245 (1994)

    Article  MathSciNet  Google Scholar 

  33. Penot J.P.: Second-order conditions for optimization problems with constraints. SIAM J. Control Optim. 37, 303–318 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rockafellar R.T., Wets R.J.: Variational analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  35. Ward D.E.: Calculus for parabolic second-order derivatives. Set Valued Anal. 1, 213–246 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, C., Jiménez, B. & Novo, V. On second-order Fritz John type optimality conditions in nonsmooth multiobjective programming. Math. Program. 123, 199–223 (2010). https://doi.org/10.1007/s10107-009-0318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0318-1

Keywords

Mathematics Subject Classification (2000)

Navigation