Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Convergence rate of Newton's method for L 2 spectral estimation

  • Published:
Mathematical Programming Submit manuscript

Abstract

In the paper, we prove the Hölder continuous property of the Jacobian of the function generated from the dual of the power spectrum estimation problem. It follows that the convergence of the Newton method for the problem is at least of order where m is the order of the trigonometric bases. This result theoretically confirms the numerical observation by Potter (1990) and Cole and Goodrich (1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, R.J.: Introductory Fourier Transform Spectroscopy. Academic Press, New York, 1972

  2. Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimension L p spectral estimation problems. SIAM J. Control Optim. 26, 985–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Tal, A., Borwein, J.M., Teboulle, M.: Spectral estimation via convex programming. In: Phillips, F.Y., Rousseau, J.J. (eds.), Systems and Management Science by Extremal Methods: Research Honoring Abraham Charnes at Age 70, Kluwer Academic Publishers, London, pp. 275–389, 1992

  4. Borwein, J.M., Lewis, A.S.: Partially finite convex programming I: Quasi relative interiors and duality theory; II: Explicit lattice models. Math. Program. 57, 15–83 (1992)

    Article  MATH  Google Scholar 

  5. Byrnes, C.I., Georgiou, T.T., Lindquist, A.: A new approach to spetral estimation: a tunable high-resolution spectral estimator. IEEE Trans. Signal Process. 48, 3189–3205 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chamberlain, J.E.: The Principles of Interferometric Spectroscopy. Wiley, New York, 1979

  7. Cole, R.E., Goodrich, R.K.: L p -spectral estimation with an L -upper bound. J. Optim. Theory Appl. 76, 321–355 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deutsch, F., Li, W., Ward, J.D.: A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory 90, 385–414 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dontchev, A.L., Qi, H., Qi, L. Qi: Convergence of Newton's method for convex best interpolation. Numer. Math. 87, 435–456 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dontchev, A.L., Qi, H., Qi, L.: Quadratic convergence of Newton's method for convex interpolation and smoothing. Constr. Approx. 19, 123–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Georgiou, T.T.: spectral estimation via selective Harmornic amplification. IEEE Trans. Automat. Control 46, 29–42 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goodrich, R.K., Steinhardt, A.: L 2 spectral estimation. SIAM J. Appl. Math. 46, 417–426 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Landau, H.J.: Maximum entropy and maximum likelihood in spectral estimation. IEEE Trans. Inform. Theory 44, 1332-1336 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  14. Lang, S.W., McClellan, J.H.: Spectral estimation for sensor arrays. IEEE Transactions on Acoustics, Speech, and Signal Processing 31, 349–358 (1983)

    Article  MATH  Google Scholar 

  15. Meng, F., Sun, D., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization. Math. Program. 104, 561–581 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Micchelli, C.A., Utreras, F.I.: Smoothing and interpolation in a convex subset of a Hilbert space. SIAM J. Sci. Statist. Comput. 9, 728–747 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  17. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, 1970

  19. Pang, J.-S., Qi, L.: Nonsmooth equation: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pang, J.-S., Qi, L.: A globally convergent Newton method for convex SC 1 minimization problems. J. Optim. Theory Appl. 85, 633–648 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Potter, L.C.: Constrained Signal Reconstruction. Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1990

  22. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qi, L., Shapiro, A., Ling, C.: Differentiability and semismoothness properties of integral functions and their applications. Math. Program. 102, 223–248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Program. 58, 353–367 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Qi.

Additional information

This author's work was partially supported by the Hong Kong Research Grant Council and the National Natural Science Foundation of China NSF70472074.

This author's work is supported by the Hong Kong Research Grant Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Ling, C. & Qi, L. Convergence rate of Newton's method for L 2 spectral estimation. Math. Program. 107, 539–546 (2006). https://doi.org/10.1007/s10107-005-0695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0695-z

Mathematics Subject classification (2000)

Navigation