Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adjustable robust solutions of uncertain linear programs

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider linear programs with uncertain parameters, lying in some prescribed uncertainty set, where part of the variables must be determined before the realization of the uncertain parameters (‘‘non-adjustable variables’’), while the other part are variables that can be chosen after the realization (‘‘adjustable variables’’). We extend the Robust Optimization methodology ([1, 3-6, 9, 13, 14]) to this situation by introducing the Adjustable Robust Counterpart (ARC) associated with an LP of the above structure. Often the ARC is significantly less conservative than the usual Robust Counterpart (RC), however, in most cases the ARC is computationally intractable (NP-hard). This difficulty is addressed by restricting the adjustable variables to be affine functions of the uncertain data. The ensuing Affinely Adjustable Robust Counterpart (AARC) problem is then shown to be, in certain important cases, equivalent to a tractable optimization problem (typically an LP or a Semidefinite problem), and in other cases, having a tight approximation which is tractable. The AARC approach is illustrated by applying it to a multi-stage inventory management problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tal, A., El~Ghaoui, L., Nemirovski, A.: ‘‘Robust Semidefinite Programming.’’ In: R. Saigal, H. Wolkowitcz, L. Vandenberghe, (eds.), Handbook on Semidefinite Programming, Kluwer Academis Publishers, 2000

  2. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2002

  3. Ben-Tal, A. Nemirovski, A.: ‘‘Robust Convex Optimization.’’ Math. Oper. Res. 23, (1998)

  4. Ben-Tal, A., Nemirovski, A.: ‘‘Robust solutions to uncertain linear programs.’’ OR Letters 25, 1–13 (1999)

    Article  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: ‘‘Stable Truss Topology Design via Semidefinite Programming.’’ SIAM J. Optim. 7, 991–1016 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A., Roos, C.: ‘‘Robust solutions of uncertain quadratic and conic-quadratic problems.’’ to appear in SIAM J. on Optimization, 2001

  7. Bonhenblust, H.F., Karlin, S., Shapley, L.S.: ‘‘Games with continuous pay-offs.’’ In: Annals of Mathematics Studies, 24, 1950, pp. 181–192

    Google Scholar 

  8. Boyd, S., El~Ghaoui, L., Feron, E., Balakrishnan, V.: ‘‘Linear Matrix Inequalities in System and Control Theory.’’ Volume 15 of Studies in Applied Mathematics, SIAM, Philadelphia, 1994

  9. Chandrasekaran, S., Golub, G.H., Gu, M., Sayed, A.H.: ‘‘Parameter estimation in the presence of bounded data uncertainty.’’ J. Matrix Anal. Appl. 19, 235–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dantzig, G.B., Madansky, A.: ‘‘On the Solution of Two-Stage Linear Programs under Uncertainty.’’ Proceedings of the Fourth Berkley Symposium on Statistics and Probability, 1, University California Press, Berkley, CA, 1961, pp. 165–176

  11. Grötschel, M., Lovasz, L., Schrijver, A.: ‘‘The Ellipsoid Method and Combinatorial Optimization.’’ Springer, Heidelberg, 1988

  12. Guslitser, E.: ‘‘Uncertatinty-immunized solutions in linear programming.’’ Master Thesis, Technion, Israeli Institute of Technology, IE&M faculty 2002. http://iew3.technion.ac.il/Labs/Opt/index.php?4

  13. El-Ghaoui, L., Lebret, H.: ‘‘Robust solutions to least-square problems with uncertain data matrices.’’ SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Ghaoui, L., Oustry, F., Lebret, h.: ‘‘Robust solutions to uncertain semidefinite programs.’’ SIAM J. Optimization 9, 33–52 (1998)

    Article  MATH  Google Scholar 

  15. Motskin, T.S.: ‘‘Signs of Minors.’’ Academic Press 1967, pp. 225–240

  16. Murty, K.G.: ‘‘Some NP-Complete problems in quadratic and nonlinear programming.’’ Math. Program. 39, 117–129 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Prekopa, A.: ‘‘Stochastic Programming.’’ Klumer Academic Publishers, Dordrecht, 1995

  18. Soyster, A.L.: ‘‘Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming.’’ Oper. Res. 1154–1157 (1973)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research was partially supported by the Israeli Ministry of Science grant # 0200-1-98, the Israel Science Foundation founded by The Israel Academy of Sciences and Humanities, grant # 683/99-10.0, and the Fund for Promotion of Research at the Technion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Tal, A., Goryashko, A., Guslitzer, E. et al. Adjustable robust solutions of uncertain linear programs . Math. Program., Ser. A 99, 351–376 (2004). https://doi.org/10.1007/s10107-003-0454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0454-y

Keywords

Navigation