Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, based on the hyperplane projection technique, we propose a three-term conjugate gradient method for solving nonlinear monotone equations with convex constraints. Due to the derivative-free feature and lower storage requirement, the proposed method can be applied to the solution of large-scale non-smooth nonlinear monotone equations. Under some mild assumptions, the global convergence is proved when the line search fulfils the backtracking line search condition. Moreover, we prove that the proposed method is R-linearly convergent. Numerical results show that our method is competitive and efficient for solving large-scale nonlinear monotone equations with convex constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood, A.J., Wollenberg, B.F.: Power Generations, Operations, and Control. Wiley, New York (1996)

    Google Scholar 

  2. Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22, 333–361 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143–151 (1990)

    Article  Google Scholar 

  4. El-Hawary, M.E.: Optimal Power Flower: Solution Techniques, Requirement, and Challenges. IEEE Service Center, Piscataway (1996)

    Google Scholar 

  5. Dirkse, S.P., Ferris, M.C.: MCPLIB: a collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5, 319–345 (1995)

    Article  Google Scholar 

  6. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)

    Article  MathSciNet  Google Scholar 

  7. Dennis, J.E., Moré, J.J.: Quasi-Newton method, motivation and theory. SIAM Rev. 19, 46–89 (1977)

    Article  MathSciNet  Google Scholar 

  8. Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, NJ(1983)

  9. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  10. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Comput. Supplementum 15, 239–249 (2001)

    Article  MathSciNet  Google Scholar 

  11. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  12. Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66, 33–46 (2007)

    Article  MathSciNet  Google Scholar 

  13. Cheng, W.Y.: A PRP type method for systems of monotone equations. Math. Comput. Modell. 50, 15–20 (2009)

    Article  MathSciNet  Google Scholar 

  14. Polak, E., Ribière, G.: Note sur la convergence de directions conjugées”. Revue Francaise d’informatique et de recherche Opérationnelle, série rouge 16, 35–43 (1969)

    MATH  Google Scholar 

  15. Polyak, B.T.: The conjugate gradient mehod in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969)

    Article  Google Scholar 

  16. Li, D.H., Wang, X.L.: A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations. Numer. Algebra Control Optim. 1, 71–82 (2011)

    Article  MathSciNet  Google Scholar 

  17. Zhang, L., Zhou, W., Li, D.H.: Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijio-type line search. Numer. Math. 104, 561–572 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MathSciNet  Google Scholar 

  19. Xiao, Y., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405, 310–319 (2013)

    Article  MathSciNet  Google Scholar 

  20. Wang, X.Y., Li, S.J., Kou, X.P.: A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints. Calcolo 53, 133–145 (2016)

    Article  MathSciNet  Google Scholar 

  21. Beale, E.M.L.: A derivation of conjugate gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization, pp. 39–43. Academic Press, London (1972)

    Google Scholar 

  22. Nazareth, L.: A conjugate direction algorithm without line search. J. Optim Theory Appl. 23, 373–387 (1997)

    Article  MathSciNet  Google Scholar 

  23. Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak-Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)

    Article  MathSciNet  Google Scholar 

  24. Zhang, L., Zhou, W., Li, D.H.: Some descent three-term conjugate gradient methods and their global convergece. Optim. Methods Softw. 22, 697–711 (2007)

    Article  MathSciNet  Google Scholar 

  25. Cheng, W.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 28, 1217–1230 (2007)

    Article  MathSciNet  Google Scholar 

  26. Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear monotone equations. Comput. Appl. Math. 196, 478–484 (2006)

    Article  MathSciNet  Google Scholar 

  27. La Cruz, W., Martinez, J.M., Raydon, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MathSciNet  Google Scholar 

  28. Zhou, W.J., Li, D.H.: Limited memory BFGS methods for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the helpful comments and suggestions of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjiang He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the Chinese National Science Foundation (NSFC61561019 and NSFC11371384) and Chongqing Graduate Student Research Innovation Project (CYS14020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., He, C. An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints. Calcolo 55, 53 (2018). https://doi.org/10.1007/s10092-018-0291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0291-2

Keywords

Mathematics Subject Classification

Navigation