Abstract
In this paper, a new procedure, called generalized shrinkage conjugate gradient (GSCG), is presented to solve the \(\ell _1\)-regularized convex minimization problem. In GSCG, we present a new descent condition. If such a condition holds, an efficient descent direction is presented by an attractive combination of a generalized form of the conjugate gradient direction and the ISTA descent direction. Otherwise, ISTA is improved by a new step-size of the shrinkage operator. The global convergence of GSCG is established under some assumptions and its sublinear (R-linear) convergence rate in the convex (strongly convex) case. In numerical results, the suitability of GSCG is evaluated for compressed sensing and image debluring problems on the set of randomly generated test problems with dimensions \(n\in \{2^{10},\ldots ,2^{17}\}\) and some images, respectively, in Matlab. These numerical results show that GSCG is efficient and robust for these problems in terms of the speed and ability of the sparse reconstruction in comparison with several state-of-the-art algorithms.
Similar content being viewed by others
References
Ahookhosh, M.: High-dimensional nonsmooth convex optimization via optimal subgradient methods. Ph.D. Thesis, Faculty of Mathematics, University of Vienna (2015)
Ahookhosh, M.: User’s manual for OSGA (Optimal SubGradient Algorithm). http://homepage.univie.ac.at/masoud.ahookhosh/uploads/User’s_manual_for_OSGA.pdf (2014)
Ahokhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimization. Numer. Algorithms 59(4), 523–540 (2012)
Amini, K., Ahookhosh, M., Nosratpour, H.: An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algorithm 66, 49–78 (2014)
Amini, K., Shiker, M.A.K., Kimiaei, M.: A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4OR-Q. J. Oper. Res. 14(2), 133–152 (2016)
Barzilai, J., Borwein, J.M.: Two point step size gradient method. IMA J. Numer. Anal. 8, 141–148 (1988)
Bazaraa, M.S., Sherali, S.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, New York (2006)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Birgin, E.G., Mart̀inez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23(4), 539–559 (2003)
Birgin, E.G., Mart̀inez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)
Bioucas-Dias, J., Figueiredo, M.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007)
Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles, exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory. 52(2), 489–509 (2006)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
Dolan, E., Morè, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory. 52(4), 1289–1306 (2006)
Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
Elad, M.: Sparse and Redundant Representation from Theory to Application in Signal and Image Processing. Springer, Berlin (2010). ISBN 978-1-4419-7011-4
Eldar, C.Y., Kutyniok, G.: Compressed Sensing: Theory and Application. Cambridge University Press, New York (2012). ISBN 978-1-107-00558-7
Esmaeili, H., Rostami, M., Kimiaei, M.: Combining line search and trust-region methods for \(\ell _1\)-minimization. Int. J. Comput. Math. 95(10), 1950–1972 (2018)
Figueiredo, M.A., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)
Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)
Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York (2013)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)
Hager, W.W., Phan, D.T., Zhang, H.: Gradient based methods for sparse recovery. SIAM J. Imaging Sci. 41, 146–165 (2011)
Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)
Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(\ell _1\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)
Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation applied to compressed sensing: implementation and numerical experiment. J. Comput. Math. 28(2), 170–194 (2010)
Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)
Huang, Y., Liu, H.: A Barzilai–Borwein type method for minimizing composite functions. Numer. Algorithm 69, 819–838 (2015)
Iiduka, H.: Hybrid conjugate gradient method for a convex optimization problem over the fixed-point set of a nonexpansive mapping. J. Optim. Theory Appl. 140, 463–475 (2009)
Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping. SIAM J. Optim. 19(4), 1881–1893 (2009)
Kowalski, R.M.: Proximal algorithm meets a conjugate descent. Pac. J. Optim. 12(3), 549–667 (2011)
Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (1999)
Parikh, N., Boyd, S.: Proximal algorithms. Found. Trend. Optim. 1(3), 123–231 (2013)
Polak, E., Ribière, G.: Note sur la convergence de directions conjugées. Rev. Fr. Inform. Rech. Opèrtionnelle 3e Année 16, 35–43 (1969)
Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26–33 (1997)
Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1), 387–423 (2009)
Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832–1857 (2010)
Wen, Z., Yin, W., Zhang, H., Goldfarb, D.: On the convergence of an active set method for \(\ell _1\)-minimization. Optim. Methods Softw. 27(6), 1127–1146 (2012)
Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)
Xiao, Y., Wu, S.-Y., Qi, L.: Nonmonotone Barzilai–Borwein gradient algorithm for \(\ell _1\)-regularized nonsmooth minimization in compressive sensing. J. Sci. Comput. 61, 17–41 (2014)
Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)
Acknowledgements
We would like to thank the high performance computing (HPC) center, a branch of institute for research in fundamental Physics and Mathematics (IPM), to help us to use HPC’s cluster for computing numerical results. The third author acknowledges the financial support of the Doctoral Program “Vienna Graduate School on Computational Optimization” funded by Austrian Science Foundation under Project No. W1260-N35.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Esmaeili, H., Shabani, S. & Kimiaei, M. A new generalized shrinkage conjugate gradient method for sparse recovery. Calcolo 56, 1 (2019). https://doi.org/10.1007/s10092-018-0296-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10092-018-0296-x
Keywords
- \(\ell _1\)-Minimization
- Compressed sensing
- Image debluring
- Shrinkage operator
- Generalized conjugate gradient method
- Nonmonotone technique
- Line search method
- Global convergence