Abstract
Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.
Similar content being viewed by others
References
Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD et al (2009) EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329
Ingham CJ, Boonstra S, Levels S, de Lange M, Meis JF, Schneeberger PM (2012) Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminium oxide. PLoS ONE 7:e33818
Correia A, Sampaio P, Vilanova M, Pais C (2015) Candida albicans: clinical relevance, pathogenesis, and host immunity. In: Sing SK (ed) Human emerging and re-emerging infections: viral and parasitic infections, vol 1. John Wiley and Sons, New Jersey, pp 926–952
Limon JJ, Skalski JH, Underhill DM (2017) Commensal fungi in health and disease. Cell Host Microbes 22:156–165
De Rosa FG, Garazzino S, Pasero DC, Peri GD (2009) Invasive candidiasis and candidemia: new guidelines. Minerva Anaestesiologica 75:453–458
Negri M, Faria M, Guilhermetti E, Alves A, Paula C, Svidzinski T (2010) Hemolytic activity and production of germ tubes related to pathogenic potential of clinical isolates of Candida albicans. J Basic Appl Pharm. 31:89–93
Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbio 19:241–247
Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB (2003a) Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J 22:686–691
Bongomin F, Gago S, Oladele R, Denning D (2017) Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi 3:57
Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K (2018) Candida albicans-biology, molecular characterization, pathogenicity, and advances in diagnosis and control-an update. Microb Pathog 117:128–138
Caceres DH, Forsberg K, Welsh RM, Sexton DJ, Lockhart SR, Jackson BR et al (2019) Candida auris: a review of recommendations for detection and control in health care settings. J Fungi 5:111
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658
Kornitzer D (2019) Regulation of Candida albicans hyphal morphogenesis by endogenous signals. J Fungi 5:21
Wisplinghoff H, Elobers J, Geurtz L, Stefanik D, Major Y, Edmond MB et al (2014) Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features and antifungal susceptibilities. Int J Antimicrob Agents 43:78–81
Perez JC, Johnson AD (2013) Regulatory circuits that enable proliferation of the fungus Candida albicans in a mammalian host. PLoS Pathogen 9(12):e1003780
Jacobsen ID, Hube B (2017) Candida albicans morphology: still in focus. Expert Rev Anti Infect Ther 15:327–330
Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K et al (2011) Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J BioChem 150:431–438
Seman BG, Moore JL, Scherer AK, Blair BA, Manandhar S, Jones JM et al (2018) Yeast and filaments have specialized, independent activities in a zebrafish model of Candida albicans infection. Infect Immun 86:e00415–e00418
Desai JV, Cheng S, Ying T, Nguyen MH, Clancy CJ, Lanni F et al (2015) Coordination of Candida albicans invasion and infection functions by phosphoglycerol phosphatase Rhr2. Pathogens 4:573–589
Kadosh D (2017) Morphogenesis in C. albicans. In: Prasad R (ed) Candida albicans: Cell Mol Biol. Springer, Cham
Han TL, Cannon RD, Villas-Boas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763
Monge RA, Román E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912
Gong Y, Li T, Yu C, Sun S (2017) Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets. Front Cell Infect Microbiol 7:520
Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn JA (2004) Conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190
Hogan D, Sundrom P (2009) The Ras/Camp/PKA signaling pathways and virulence in Candida albicans. Future Microbiol 4:1263–1270
Lin C-J, Wu C-Y, Yu S-J, Chen Y-L (2018) Protein kinase A governs growth and virulence in Candida tropicalis. Virulence 9(1):331–347
Inglis DO, Sherlock G (2013) Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryot Cell 12:1316–1325
Lin CJ, Chen YL (2018) Conserved and divergent functions of the cAMP/PKA signaling pathway in Candida albicans and Candida tropicalis. J Fungi 4:68
Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12:365–370
Brown A, Haynes K, Gow N, Quinn J (2012) Stress responses in Candida, 2nd edn. ASM Press, Washington, D.C., pp 225–242
Zhou Y, Liao M, Zhu C, Hu Y, Tong T, Peng X et al (2018) ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int J Oral Sci 10:9
de Oliveira SGC, Vasconcelos CC, Lopes AJO, de Sousa Cartagenes MDS, Filho AKDB, do Nascimento FRF et al (2018) Candida infections and therapeutic stratégies: mechanisms of action for traditional and alternative agents. Front Microbiol 9:1351
Dantas SA, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B et al (2016) Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 34:111–118
Schonherr FA, Sparber F, Kirchner FR, Guiducci E, Trautwein-weidner K, Gladiator A et al (2017) The interspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol 10:1335–1350
Braunsdorf C, LeibundGut-Landmann S (2018) Modulation of the fungal-host interaction by the intra-species diversity of C. albicans. Pathogens 7:11
Reedy JL, Filler SG, Heitman J (2010) Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47:107
Liu S, Liu W (2015) Components of the canclium-calcinerium signaling pathways in fungal cells and their potential as antifungal targets. Eukaryot Cell 14:4
Yu Q, Jia C, Dong Y, Zhang B, Xiao C, Chen Y et al (2015) Candida albicans autophagy, no longer a bystander: its role in tolerance to ER stress-related antifungal drugs. Fungal Genet Biol 81:238–249
Shang-Jie Y, Ya-Lin C, Ying-Lie C (2015) Calcineurin signaling: lessons from Candida species. FEMS Microbiol 15:4
Wang L, Lin X (2012) Morphogenesis in fungal pathogenesis: shape, size and surface. PLoS Pathog 8:e1003027
Kim S, Nguyen QB, Wolyniak MJ, Frechette G, Lehman CR, Fox BK et al (2018) Release of transcriptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes. PLoS ONE 13:e0192260
Sharma J, Rosiana S, Razzaq I, Shapiro RS (2019) Linking cellular morphogenesis with antifungal treatment and susceptibility in Candida pathogens. J Fungi 5:17
Sun JN, Solis NV, Phan QT, Bajwa JS, Kashlera H, Thompson A et al (2010) Host cell invasion and virulence mediated by Candida albicans Ssai. PLos Pathog 6:e1001181
Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6:e17046
Lindsay AK, Deveau A, Piispanen AE, Hogan DA (2012) Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot Cell 11:1219–1225
Lu Y, Su C, Liu H (2014) Candida albicans hyphal initiation and elongation. Trends Microbiol 22:707–714
Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Blass M, Claus R et al (2015) The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. MBio 6:e00143
Wu Y, Li YH, Yu SB, Li WG, Liu XS, Zhao L et al (2016) A Genome-wide transcriptional analysis of yeast-hyphal transition in Candida tropicalis by RNA-Seq. PLoS ONE 11:e0166645
Kadry AA, El-Ganiny AM, El-Baz AM (2018) Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans. Afr Health Sci 18:1166–1174
Zaugg C, Borg-von Zepelin M, Reichard U, Sanglard D, Monod M (2001) Secreted aspartic proteinase family of Candida tropicalis. Infect Immun 69:405–412
Meenambiga SS, Venkataraghavan R, Biswal RA (2018) In silico analysis of plant phytochemicals against secreted aspartic proteinase enzyme of Candida albicans. J Appl Pharm Sci 8:140–150
Deepa K, Jeevitha T, Michael A (2015) In vitro evaluation of virulence factors of Candida species isolated from oral cavity. J Microbiol Antimicrob 7:28–32
Khedidja B, Abderrahman L (2011) Selection of orlistat as a potential inhibitor for lipase from Candida species. Bioinformation 7:125–129
Inci M, Atalay MA, Koç AN, Yula E, Evirgen O, Durmaz S et al (2012) Investigating virulence factors of clinical Candida isolates in relation to atmospheric conditions and genotype. Turk J Med Sci 42:1476–1483
Rossoni RR, Barbosa JO, Vilela SFG, Jorge AOC, Junqueira JC (2013) Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res 27:484–489
Tsang CSP, Chu FCS, Leung WK, Jin LJ, Samaranayake LP, Siu SC (2007) Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus. J Med Microbiol 56:1393–1399
Wilson D, Naglik JR, Hube B (2016) The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLOS Pathog 12:e1005867
Richardson JP, Mogavero S, Moyes DL, Blagojevic M, Krüger T, Verma AH et al (2018) Processing of Ece1p is critical for candidalysin maturation and fungal virulence. MBio 9:e02178–e02117
Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15
Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL et al (2012) Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLos ONE 7:e33362
Soll DR (2014) The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J Oral Microbiol 6:1
Meir J, Hartmann E, Eckstein MT, Guiducci E, Kirchner F, Rosenwald A et al (2018) Identification of Candida albicans regulatory genes governing mucosal infection. Cell Microbiol 20:e12841
Shapiro RS, Zaas AK, Betancourt-Quiro M, Perfect JJ, Cowen LE (2012) The Hsp 90 co-chaperon sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS ONE 7:e44734
O’Meara TR, Robbins N, Cowen LE (2017) The Hsp90 chaperone network modulates Candida virulence traits. Trends Microbiol 25:809–819
Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR et al (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis and drug resistance. PLoS ONE 7:e44734
O’meara TR, Cowen LE (2014) Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cell Microbiol 16:473–481
Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the Biology of Fungi. Biotech Res Int 11
Matos TGF, Morais FV, Campos CBL (2013) Paracoccidioides brasiliensis proliferation and ROS levels under thermal stress and cooperates with calcineurin to control yeast to mycelium dimorphism. Med Mycol 51:413–421
Cowen L, Shapiro RS (2010) Coupling temperature sensing and development. Hsp90 regulates morphogenetic signaling in Candida albicans. Virulence 1:45–48
Mishra S, Singh S, Misra K (2017b) Restraining pathogenicity in Candida albicans by taxifolin as an inhibitor of Ras1-pka pathway. Mycopathologia 182:953–965
Habich C, Kempe K, Gomez FJ, Lillicrap M, Gaston H, van der Zee R et al (2006) Heat shock protein 60: identification of specific epitopes for binding to primary macrophages. FEBS Lett 580:115–120
Kaul G, Thippeswamy H (2011) Role of heat shock proteins in diseases and their therapeutic potential. Ind J Microbiol 51:124–131
Fu MS, De Sordi L, Muhlschlegel FA (2012) Functional characterization of the small heat shock protein Hsp12p from Candida albicans. PLos ONE 7:e42894
Mayer FL, Wilson D, Jacobsen ID, Miramon P, Slesiona S, Bohovych IM et al (2012) Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS ONE 7:e38584
Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans epithelial interactions and pathogenicity mechanisms, scratching the surface. Virulence 6:338–346
Tang SX, Moyes DL, Richardson JP, Blagojevic M, Naglik JR (2016) Epithelial discrimination of commensal and pathogenic Candida albicans. Oral Dis 22:114–119
Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Microbiol 32:21–27
Altmeier S, Toska A, Sparber F, Teijeira A, Halin C (2016) Leibund, Gut-Landmann S. IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa. PLoS Pathog 12:e1005882
Caffrey AK, Obar JJ (2016) Alarming the innate immune system to invasive fungal. Curr Opin Microbiol 32:135–143
Lionakis MS (2014) New insights into innate immune control of systemic candidiasis. Med Mycol 52:555–564
Yano J, Noverr MC, Fidel PL (2012) Cytokines in the host response to Candida vaginitis: identifying a role for non-classical immune mediators, S100 alarmins. Cytokine 58:118–128
Alexandra B (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 517529:11
Wang GS, Deng JH, Ma YH, Shi M, Li B (2012) Mechanisms, clinically curative effects and antifungal activities of cinnamon oil and progostemon oil complex against three species of Candida. J Tardit Chin Med 32:19–24
Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4:e35
Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748
Arkowitz RA, Bassilana M (2015) Regulation of hyphal morphogenesis by Ras and Rho small GTPases. Fungal Biol Rev 29:7–19
Martin R, Albrecht-Eckardt D, Brunke S, Hube B, Hunniger K, Kurzai O (2013) A core filamentation response network in Candida albicans is restricted to eight genes. PLoS ONE 8:e58613
Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesins Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610
de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N (2013) Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12:470–481
Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459
Fu Y, Phan QT, Luo G, Solis NV, Liu Y, Cormack BP (2013) UME6, a Novel Filament-Specific Regulator of Candida albicans Hyphal Extension and Virulence. Infect Immun 81:2528–2535
Bailey DA, Feldmann PJF, Bovey M, Gow NAR, Brown AJP (1996) The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178:5353–5360
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J et al (2016) Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532:64–68
Lane S, Zhou S, Pan T, Dai O, Liu H (2001) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol Cell Biol 21:6418–6428
Panariello BHD, Klein MI, Pavarina AC, Duarte S (2017) Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. J Oral Microbiol 9:1385372
Glazier VE, Murante T, Murante D, Koselny K, Liu Y, Kim D et al (2017) Genetic analysis of the Candida albicans biofilm transription factor network using simple and complex haploinsufficiency. PLoS Genet 13:e1006948
Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912
Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human fungal pathogen Candida albicans, is a member of a conserved class of Bhlh proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991
Calderone R (1998) The INT1 of Candida albicans. Trends Microbiol 6:300–301
Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the Candida albicans transcription factor Bcr1p. Curr Biol 15:1150–1155
Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchel AP et al (2011) Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLos ONE 6:e16218
Reyna-Beltran E, Iranzo M, Calderon-Gonzalez KG, Mondragon-Flores R, Labra-Barrios ML, Mormeneo S et al (2018) The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis and osmotic protection. J Biol Chem 293:4304–4323
Li L, Zhang T, Xu J, Wu J, Wang Y, Qiu X et al (2019) The synergism of the small molecule ENOblock and fluconazole against fluconazole-resistant Candida albicans. Front Microbiol 10:2071
Martin R, Moran GP, Jacobsen ID, Heyken A, Domey J, Sulivan DJ et al (2011) The Candida albicans-specific gene EED1 encodes a key regulatory of hyphal extension. PLos ONE 6:e18394
Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C et al (2008) Mol Biol Cell 19:1354–1365
Zeidler U, Lettner T, Lassnig C, Muller M, Lajko R, Hintner H et al (2009) ME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res 9:126–142
Carlisle PL, Kadosh D (2010) Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryot Cell 9:1320–1328
Saputo S, Kumar A, Krysan DJ (2014) Efg1 directly regulates ACE2 expression to mediate cross talk between the Camp/pka and RAM pathways during Candida albicans morphogenesis. Eukaryot Cell 13:1169–1180
Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL (2017) Targeting Candida albicans filamentation for antifungal drug development. Virulence 8:150–158
Maiti P, Ghorai P, Ghosh S, Kamthan M, Tyagi RK, Datta A (2015) Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans. Fungal Genet Biol 83:45–57
Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:57–67
Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512
Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans is down-regulated during filament induction. EMBO J 20:4753–4761
Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109
Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D et al (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752
Koch B, Barugahare AA, Lo TL, Huang C, Schittenhelm RB, Powell DR et al (2018) A metabolic checkpoint for the yeast-to-hyphae developmental switch regulated by endogenous nitric oxide signaling. Cell Rep 25:2244–2258
Tan X, Fuchs BB, Wang Y, Chen W, Yuen GJ, Chen RB et al (2014) The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis. PLoS ONE 9:e94468
El-Khoury P, Awad A, Wex B, Khalaf RA (2018) Proteomic analysis of a Candida albicans pir32 null strain reveals proteins involved in adhesion, filamentation and virulence. PLoS ONE 13:e0194403
Bar-Yosef H, Gildor T, Ramirez-Zavala B, Schmauch C, Weissman Z, Pinsky M et al (2018) A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1. Front Cell Infect Microbiol 8:17
Mishra R, Driven FV, Dechant R, Oh S, Neon NL, Lee S et al (2017a) Protein kinase C. and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc Natl Acad Sci USA 114:13471–13476
Lu Y, Su C, Wang A, Liu H (2011) Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 9:e1001105
Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4:728–735
Banerjee M, Lazzell AL, Romo JA, Lopez-Ribot JL, Kadosh D (2019) Filamentation is associated with reduced pathogenesis of multiple non-albicans Candida species. mSphere 4:e00656–e00619
Johnson A (2003) The biology of mating in Candida albicans. Nat Rev Microbiol 1:106–116
Alby K, Bennett RJ (2009) Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell 20:3178–3191
Bommanavar SB, Gugwad S, Malik N (2017) Phenotypic switch: the enigmatic white-gray-opaque transition system of Candida albicans. J Oral Maxillofac Pathol 21:82–86
Solis NV, Park YN, Swidergall M, Daniels KJ, Filler SG, Soll DR (2018) Candida albicans white-opaque switching influences virulence but not mating during oropharyngeal candidiasis. Infect Immun 86:e00774–e00717
Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W et al (2014) Discovery of a “white-gray-opaque” tristable phenotypic switching system in Candida albicans: roles of non-genetic diversity in host adaptation. PLoS Biol 12:e1001830
Alkafeef SS, Yu C, Huang L, Liu H (2018) Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 14:e1007176
Yang SL, Zeng G, Chan FY, Wang YM, Dongliang Y, Wang Y (2018) Sac7 and Rho1 regulate the white-to-opaque switching in Candida albicans. Sci Rep 8:875
Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhauser J (2013) White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot cell 12:50–58
Perini HF, Moralez ATP, Almeida RSC, Panagio LA, Junior AOG, Barcellos FG et al (2019) Phenotypic switching in Candida tropicalis alters host-pathogen interactions in a Galleria mellonella infection model. Sci Rep 9:12555
Xie J, Du H, Guan G, Tong Y, Kourkoumpetis TK, Zhang L et al (2012) N-acetylglucosamine induces white-to-opaque switching and mating in Candida tropicalis, providing new insights into adaptation and fungal sexual evolution. Eukaryot Cell 11:773–782
Silva S, Rodriguez CF, Araujo D, Rodriguez ME, Henriques M (2017) Candida species biofilm antifungal resistsance. J Fungi (Basel) 3
Deorukhkar SC, Roushani S (2017) Virulence traits contributing to pathogenicity of Candida species. J Microbiol Exp 5:00140
Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848
Nerurkar A, Solanky P, Chavda N, Baria H (2012) Isolation of Candida species in clinical specimens and its virulence factors: the biofilm. J Med Sci Public Health 1:5455
Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM (2013) Mendes-Giannini, MJS Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24
Subramanya SH, Sharan NK, Bara BP, Hama D, Nayak N, Prakash PY et al (2017) Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus. BMC Microbiol 17:113
Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD et al (2017) Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis 23:328–331
Pereira-Cenci T, Del Bel Cury AA, Crielaard W, Ten Care JM (2008) Development of Candida associated denture stomatitis: new insights. J Appl Oral Sci 16:86–94
Lauren Bach JM, Epstein JB (2009) Treatment strategies for oropharyngeal candidiasis. Expert Opin Pharmacother. 10:1413–1421
Rautemaa R, Ramage G (2011) Oral candidiasis-clinical challenges of a biofilm disease. Crit Rev Microbiol 37:328–336
Araújo D, Henriques M, Silva S (2017) Portrait of Candida species biofilm regulatory network genes. Trends Microbiol 25:62–75
Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med 5:28
Richard ML, Plaine A (2007) Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133
Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD et al (2013) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138
Lagree K, Mon HH, Mitchell AP, Ducker WA (2018) Impact of surface topography on biofilm formation by Candida albicans. PLoS ONE 13:e0197925
Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY (2018) Transcriptomic and genomic approaches for unravelling Candida albicans biofilm formation and drug resistance-an update. Genes 9:540
Mayer FL, Wilson D, Humbe B (2013) Candida albicans pathogenicity mechanism. Virulence 4:119–128
Miramon P, Lorenz MC (2017) A feast for Candida metabolic plasticity confers an edge for virulence. PLoS pathog 13:e1006144
Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC (2016) Robust extracellular pH modulation by Candida albicans during growth in carboxylic acids. mBio US 7
Dunn MF, Ramirez-Trujillo JA, Hernandez-Lucas I (2009) Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166–3175
Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86
Cheah H-L, Lim V, Sandai D (2014) Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE 9:e95951
Li L, Liao Z, Yang Y, Lv L, Cao Y, Zhu Z (2018) Metabolomic profiling for the identification of potential biomarkers involved in a laboratory azole resistance in Candida albicans. PLoS ONE 13:e0192328
Laurian R, Dementhon K, Doumeche B, Soulard A, Noel T, Lemaire M (2019) Hexokinase and glucokinases are essential for fitness and virulence in the pathogenic yeast Candida albicans. Front Microbiol 10:327
Han TL, Cannon RD, Gallo SM, Villas-boas SG (2019) A metabolomics study of the effect of Candida albicans glutamate dehydrogenase deletion on growth and morphogenesis. Npj Biofilms Microbiomes 5:13
Fourie R, Kuloyo OO, Mochochko BM, Albertyn J, Pohl CH (2018) Iron at the centre of Candida albicans interactions. Front Cell Infect Microbiol 8:185
Chew SY, Chee WJY, Than LTY (2019) The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies to Candida glabrata: perspectives from Candida albicans and Saccharomyes cerevisiae. J Biomed Sci 26:52
Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human diseases. Clin Microbiol Rev 25:193–213
Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46:562–576
Bruno DCF, Bartelli TF, Rodrigues CR, Briones, MRS. Experimental evolution and genome data analysis of Candida albicans reveals cryptic bacteria in single yeast colonies. Cold spring Harbor Laboratory 2017 Doi: https://doi.org/10.1101/168500
Montelongo-Jauregui D, Lopez-Ribot JL (2018) Candida interaction with the oral bacterial microbiota. J Fungi 4:122
Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:e1000886
Sonnenborn U (2016) Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 363
Cabral DJ, Wurster JI, Flokas ME, Alevizakos M, Zabat M, Korry BJ et al (2017) The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Sci Rep 7:11040
Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hansch GM, Filler SG et al (2015) Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161:168–181
Lobo CIV, Rinaldi TB, Christiano CMS, Leite LS, Barbugil PA, Klein MI (2019) Dual-species biofilms of Streptococcus mutans and Candida albicans exhibit more biomass and are mutually beneficial compared with single-species biofilms. J Oral Microbiol 11:1581520
Kraneveld EA, Buija MJ, Bonder MV, Keijser BJF, Crielaard W, Zaura E (2012) The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS ONE 7:e42770
Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B et al (2016) Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog 12:e1005522
Cabral DJ, Penumutchu S, Norris C, Morones-Ramirez JR, Belenky P (2018) Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. Microbial cell 5:249–255
Camarillo-Marquez O, Cordova-Alcantara IM, Hernandez-Rodriquez CH, Garcia-Perez BE, Martinez-Rivera MA, Rodriguez-Tovar AV (2018) Antagonistic interaction of Staphylococcus aureus towards Candida glabrata during in vitro biofilm formation is caused by an apoptotic mechanism. Front Microbiol 9:2031
Kruger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ (2019) Fungal-bacterial interactions in health and disease. Pathogens 8:70
de Barros PP, Rossini RD, Freire F, de Camargo-Ribeiro F, Lopes L, Junqueira JC et al (2018) Candida tropicalis affects the virulence profile of Candida albicans: as in vitro and in vivo study. Pathog Dis 76:2
Malcok HK, Aktas E, Ayyildiz A, Yigit N, Yazgi H (2009) Hemolytic activities of the Candida species in liquid medium. Eurasian J Med 41:95–98
Linares CE, de Loreto ES, Silveira CP, Rozzatti P, Scheid LA, Santurio JM et al (2007) Enzymatic and hemolytic activities of Candida dubliniensis strains. Rev Inst Med Trop SP 49:203–206
Pendrak ML, Roberts DD (2007) Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Med Mycol 45:61–71
Luo G, Samaranayake LP, Yau JYY (2001) Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol 39:2971–2974
Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP et al (2013) Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates. Trop Biomed 30:654–662
Sathiya T, Malar AS, Morthy K, Punitha T, Vinodhini R, Saranya AS (2015) Candida albicans and non albicans species: a study of biofilm production and putative virulence properties. JOHRP 4:164–175
Jasim ST, Flayyih MT, Hassan A (2016) Isolation and identification of Candida spp. from different clinical specimens and study the virulence factors. World J Pharm Pharm Sci 3:121–137
Yigit N, Aktas E (2009) Comparison of the efficacy of different blood medium in determining the hemolytic activity of Candida species. J Med Mycol 19:110–115
Sachin CD, Ruchi K, Santosh S (2012) In vitro evaluation of proteinase: phospholipase and haemolysin activities of Candida species isolated from clinical specimens. Int J Med Biomed Res 1:153–157
Wan L, Luo G, Lu H, Xuan D, Cao H, Zhang J (2015) Changes in the hemolytic activity of Candida species by common electrolytes. BMC Microbiol 15:171
Arslan S, Koe AN, Sekerci AE, Tanriverdi F, Sar H, Aydemir G et al (2016) Genotypes and virulence factors of Candida species isolated from oral cavities of patients with type 2 diabetes mellitus. Turk J Med Sci 46:18–27
Bandana K, Jashandeep K, Jagdeep K (2018) Phospholipase in bacterial virulence and pathogenesis. Adv Biotechnol Microbiol 10:555798
Yang YL (2003) Virulence factors of Candida species. J Microbiol Immunol Infect 36:223–228
Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D et al (2003) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in human correlates with active oral and vaginal infections. J Infect Dis 188:469–479
Samaranayake YH, Dassanayake RS, Cheung BP, Jayatilake JA, Yeung KW, Yau JY et al (2006) Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. APMIS 114:857–866
Pandey N, Gupta MK, Tilak R (2018) Extracellular hydrolytic enzyme activities of the different Candida spp. isolated from the blood of the intensive care unit-admitted patients. J Lab Physicians 10:4
Borelli C, Ruge E, Lee JH, Schaller M, Vogelsang A, Monod M et al (2008) X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 72:1308–1319
Aya A, Marwa A, Ali A (2018) Distribution of secreted aspartyl protease (SAP) virulence genes and antifungal resistance genes at vulvovaginal candidiasis isolates. GSC Biol Pharm Sci 5:86–94
Lima JS, Braga KRGS, Vieira CA, Souza WWR, Chavez-Pavoni JH, de Araujo C et al (2018) Genotypic analysis of secreted aspartyl proteinase in vaginal Candida albicans isolates. J Bras Patol Med Lab 54:28–33
Ramos LS, Barbedo LS, Braga-Silva LA, Santos ALS, Pinto MRP, Sgarb DBG (2015) Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 32:122–125
Tsai P, Chen Y, Hsu P, Lan C (2013) Study of Candida albicans and its interactions with the host: a mini review. Biomedicine 3:51–64
Stehr F, Felk A, Gacser A, Kretschmar M, Mahnb B, Neuber K et al (2004) Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 4:4–5
Paraje MG, Correa SG, Renna MS, Theumer M, Sotomayor CE (2008) Candida albicans-secreted lipase induces injury and steatosis in immune and parenchymal cells. Can J Microbiol 54:647–659
Park M, Do E, Jung WH (2013) Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41:67–72
Gácser A, Schafer W, Nosanchuk JS, Salomon S, Nosanchuk JD (2007) Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet Biol 44:1336–1341
Padmajakshi G, Saini S, Deorukhkar S, Ramana KV (2014) Coagulase activity of Candida Spp isolated from HIV seropositive patients using different animal plasma. Am J Microbiol Res 2:57–59
Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA, Hube B et al (2019) Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J Infect Dis 9:1477–1488
Ho J, Yang X, Nikou SA, Kichik N, Donkin A, Ponde NO et al (2019) Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat Commun 10:2297
Richardson JP, Willems HME, Moyes DL, Shoaie S, Barker KS, Tan SL et al (2017) Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun 86:e00645–e00617
Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J et al (2017) Oral epithelial cells orchestrate innate type 17 responses to Candida albicans trough the virulence factor candidalysin. Sci Immunol 2:eaam8834
Verma AH, Zafar H, Ponde NO, Hepworth OW, Shira D, Aggor FEY et al (2018) IL-36 and IL-I/IL-17 drive immunity to oral candidiasis via parallel mechanisms. J Immunol 201:627–634
Burnie JP, Carter TL, Hodgetts SL, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30:53–88
Cuellar-Cruz M, Lopez-Romero E, RRuiz-Bac E, Zazueta-Sandoval R (2014) Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol 69:733–739
Nicholls S, Leach MD, Priest CL, Brown AJ (2009) Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligatory associated with warm-blooded animals. Mol Microbiol 74:844–861
Nair R, Khandelwal NK, Shariq MM, Redhu AK, Gaur NA, Shaikh S et al (2018) Identification of genome-wide binding sites of heat shock factor 1, HSF1 under basal conditions in the human pathogenic yeast, Candida albicans. AMB Express 8:116
Brown AJ, Brown GD, Netea MG, Gow NA (2014) Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22:614–622
Li X, Sun S (2016) Targeting the fungal calcium-calcineurin signaling network in overcoming drug resistance. Future Med Chem 8:1379–1381
Jaya N, Garcia V, Vierling E (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. Process Natl Acad Sci USA 106:15604–15609
Veri A, Cowen LE (2014) Progress and prospects for targeting Hsp90 to treat fungal infections. Parasitology 141:1127–1137
Nadeem SG, Shafiq A, Hakim S, Anjum Y (2013) Effect of growth media, pH and temperature on yeast to hyphal transition in Candida albicans. Open J Med Microbiol 3:185–192
Vylkova S (2017) Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 13:e1006149
Westman J, Moran G, Mogavero S, Huge B, Grinstein S (2018) Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. MBio 11:9
Stewart E, Cow NAR, Bowen DV (1988) Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134:1079–1087
Ottilie S, Goldgof GM, Cheung AL, Walker JL, Vigil E, Allen KE et al (2018) Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies. J Chem 10:6
Rane HS, Hayek SR, Frye JE, Abeyta EL, Bernardo SM, Parra KJ et al (2019) Candida albicans Pma1p contributes to growth, pH homeostasis, and hyphal formation. Front Microbiol 10:1012
Sun Y, Cao C, Jia W, Tao L, Guan G, Huang G (2015) pH regulates white-opaque switching and sexual mating in Candida albicans. Eukaryot Cell 14:1127–1134
Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I et al (2017) Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS One Pathog 13:e1006403
Spritzer M, Wiederhold NP (2018) Reduced antifungal susceptibility of vulvovaginal Candida species at normal vaginal pH levels: clinical implications. J Low Genit Tract Dis 22:152–158
Lourenco A, Pedro NA, Salazar SB, Mira NP (2019) Effect of acetic acid and lactic acid at low pH in growth and azole resistance of Candida albicans and Candida glabrata. Front Microbiol 9:3265
Marotta DH, Nantel A, Ssukal L, Teubl JR, Rauceo JM (2013) Genome-wide transcriptional profiling and enrichment mapping reveal divergent and conserved roles of Sko1 in the Candida albicans osmotic stress response. Genomics 102:363–371
Jacobsen MD, Beynon RJ, Gethings LA, Claydon AJ, Langridge JI, Vissers JPC et al (2018) Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics. Sci Rep 8:14492
Kos I, Patterson MJ, Znaidi S, Kaloriti D, Dantas AS, Herrero-de-Dios CM et al (2016) Mechanisms underlying the delayed activation of the cap1 transcription factor in Candida albicans following combinatorial oxidative and cationic stress important for phagocytic potency. MBio 7:e00331–e00316
Conrad KA, Rodriguez R, Salcedo EC, Rauceo JM (2018) The Candida albicans stress response gene stomatin-like protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells. PLoS One 13:e0192250
Kaloriti D, Jacobsen M, Yin Z, Patterson M, Tillmann A, Smith DA et al (2014) Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. MBio 5:e01334–e01314
Chaillot J, Tebbji F, Remmal A, Boone C, Brown GW, Bellaoui M et al (2015) The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrob Agents Chemother 59:4584–4592
Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S (2019) Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep 9:8872
Nobile SM, Johnson AO (2007) Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 41:193–211
Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ (2018) Functional diversification accompanies gene family expansion of MED2 homologs on Candida albicans. PLoS Genet 14:e1007326
Nobile CJ, Nett JE, Hernday AD, Hofmann OR, Deneault JS, Mantel A et al (2009) Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7:e1000133
Naglik JR, Moyes DL, Wachtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microb Infect 13:963–976
Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesion and invasion. Eukaryot Cell 10:168–173
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mba, I.E., Nweze, E.I. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 39, 1797–1819 (2020). https://doi.org/10.1007/s10096-020-03912-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10096-020-03912-w