Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image interpolation based on 2D-DWT and HDP-HMM

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a nonparametric approach with the purpose of estimating discrete wavelet transform (DWT) sub-band coefficients for high performance image interpolation. The number of clusters of defined statistical model that represents wavelet coefficients during the learning process is not fixed. The interpolating method is based on Hierarchical Dirichlet Process (HDP) where it uses the Blocked Gibbs Sampling method to obtain the optimum final values. The proposed HDP-HMM exploits statistical inter-scale, and intra-scale dependencies of image sub-bands of three-level decomposed 2D-DWT. It derives sub-bands of low resolution (LR) image, to obtain sub-bands of desired high resolution (HR) image. This research implements Hidden Markov model (HMM) to model the wavelet coefficients, and HDP to model the observations. It uses a very small size dataset that contains both LR and HR images of the dataset. The sophisticated statistical model introduced of the paper has excellent results in terms of Peak-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Feature Similarity Index (FSIM), and Edge PSNR (EPSNR). It also has a great capability of repressing disturbing artifact, due to ability to model statistical dependencies of distant pixels. This method, and other compared state-of-the-art methods, have implemented on eighteen test-benches, with different statistical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mallat S (1989) A theory for multiresolution signal decomposition: the Wavelet representation. IEEE Trans Patt Anal Mach 11(7):674–693

    Article  Google Scholar 

  2. Guoshen Yu, Sapiro G, Mallat S (2012) Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans Image Proc 21(5):2481–2499

    Article  MathSciNet  Google Scholar 

  3. Plaziac N (1999) Image interpolation using neural networks. IEEE Trans Image Proc 8(11):1647–1651

    Article  Google Scholar 

  4. Sarkar S, Bhairannawar SS (2021) Efficient FPGA architecture of optimized Haar wavelet transform for image and video processing applications. Multidimens Syst Signal Process. 32:821–844

    Article  MathSciNet  Google Scholar 

  5. Ibraheem MS, Hachicha K, Ahmed SZ, Lambert L, Garda P (2019) : High-throughput parallel DWT hardware architecture implemented on an FPGA-based platform. J Real-Time Image Proc 16:2043–2057

    Article  Google Scholar 

  6. AbdolVahab Khalili Sadaghiani, M. Ghanbari: An Optimized Hardware Design for high speed 2D-DCT processor based on modified Loeffler architecture. In: 27th Iranian Conference on Electrical Engineering (ICEE), pp. 1476–1480. (2019).

  7. Crouse MS, Nowak RD, Baraniuk RG (1998) Wavelet-based signal processing using hidden markov models. IEEE Trans Signal Proc 6(4):886–902

    Article  MathSciNet  Google Scholar 

  8. K Kinebuchi, DD Muresan, TW Parks (2001) Image interpolation using wavelet based hidden Markov trees. In: International Conference on Acoustics, Speech, and Signal Processing. In: Proceedings , Salt Lake City, Utah May, pp. 7–11.

  9. Battiato S, Gallo G, Stanco F (2002) A locally-adaptive zooming algorithm for digital images. Image Vis Comput 20(11):805–812

    Article  Google Scholar 

  10. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans on Image Proc 10:1521–1527

    Article  Google Scholar 

  11. Zhang L, Wu X (2002) Image interpolation via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238

    Article  Google Scholar 

  12. N Asuni and A Giachetti: Accuracy improvements and artifacts removal in edge based image interpolation. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Application, (2008).

  13. Liu X, Zhao D, Zhou J, Gao W, Sun H (2014) Image Interpolation via graph-based bayesian label propagation. IEEE Trans image process 23(3):1084–1096

    Article  MathSciNet  Google Scholar 

  14. Lee S-J, Kang M-C, Uhm K-H, Ko S-J (2016) An edge-guided image interpolation method using taylor series approximation. IEEE Trans Consumer Electron 62(2):159–165

    Article  Google Scholar 

  15. Aguerrebere C, Almansa A, Delon J, Gousseau Y, Mus P (2017) A bayesian hyperprior approach for joint image denoising and interpolation, with an application to HDR imaging. IEEE Trans Comput Imag 3(4):633–646

    Article  MathSciNet  Google Scholar 

  16. Abbas S, Irshad M (2018) Malik Zawwar Hussain: Adaptive image interpolation technique based on cubic trigonometric B-spline representation. IET Image Proc 12(5):769–777

    Article  Google Scholar 

  17. Khan S, Lee D-h, Khan MA, Gilal AR, Mujtaba G (2019) Efficient edge-based image interpolation method using neighboring slope information. IEEE Access 7:133539–133548

    Article  Google Scholar 

  18. Khan S, Lee DH, Khan MA, Siddiqui MF, Zafar RF, Memon KH, Mujtaba G (2020) Image interpolation via gradient correlation-based edge direction estimation. Sci Program 2020:1–12

    Google Scholar 

  19. Orhan AE, Jacobs RA (2013) A probabilistic clustering theory of the organization of visual short-term memory. Psychol Rev 120(2):297

    Article  Google Scholar 

  20. Rasmussen CE The Infinite Gaussian Mixture Model. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, Denvor, CO, USA, 554–560 (1999).

  21. Gorur D, Rasmussen CE (2010) Dirichlet process gaussian mixture models, choice of the base distribution. J Comp Sci Technol 25(4):615–626

    MathSciNet  Google Scholar 

  22. S Mohamad, A Bouchachia, and MS Mouchaweh A Non-parametric Hierarchical Clustering Model. In: International Conference on Evolving and Adaptive Intelligent Systems (EAIS), Douai, France, (2015).

  23. Neal RM (2000) Markov chain sampling methods for dirichlet process mixture models. J Comput Graph Stat 9(2):249–265

    MathSciNet  Google Scholar 

  24. H Choi, RG Baraniuk (1999) Image segmentation using wavelet domain classification. In: Mathematical modeling, bayesian estimation, and inverse problems, international society for optics and photonics, vol 3816, pp 306–320

  25. DB DAHL (2006) Model-based clustering for expression data via a dirichlet process mixture model. In: Bayesian inference for gene expression and proteomics, chap 10. Blackwell, London, pp 201–218

    Chapter  Google Scholar 

  26. AK Sadaghiani, S Sheilkhai, B Forouzandeh High Performance Image Compression Based on Optimized EZW Using Hidden Markov Chain and Gaussian Mixture Model. In: 28th Iranian Conference on Electrical Engineering (ICEE), pp. 1–5. (2020).

  27. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  28. Teh YW, Joedan Ml, beal MJ, Blei DM (2012) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476):1566–1581

    Article  MathSciNet  Google Scholar 

  29. Chien J-T (2017) Bayesian nonparametric learning for hierarchical and sparse topics. IEEE Trans Audio Speech Language Process 26(2):422–435

    Article  Google Scholar 

  30. Mahalakshmi GS, MuthuSelvi G, Sendhilkumar S (2019) Gibbs sampled hierarchical Dirichlet mixture model based approach for clustering scientific articles. Smart Comput Parad New Progresses Challenges 766:169–177

    Article  Google Scholar 

  31. https://homepages.cae.wisc.edu/~ece533/images/

  32. http://www.cs.albany.edu/~xypan/research/snr/Kodak.html

  33. http://sipi.usc.edu/database/

  34. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

  35. Bagheri E, Dastghaibyfard G, Hamzeh A (2018) FSIM: a fast and scalable influence maximization algorithm based on community detection. Int J Uncertain Fuzziness Knowl Based Syst 26(3):379–396

    Article  MathSciNet  Google Scholar 

  36. Maksimović-Moićević S, Lukač Ž, Temerinac M (2019) Objective estimation of subjective image quality assessment using multi-parameter prediction. IET Image Process 13(13):2428–2435

    Article  Google Scholar 

  37. A. Giachetti and N. Asuni: Fast artifacts-free image interpolation. In: British Machine Vision Conference, (2008).

  38. Liu X, Zhao D, Xiong R, Ma S, Gao W, Sun H (2011) Image interpolation via regularized local linear regression. IEEE Trans on Image Process 20(12):3455–3469

    Article  MathSciNet  Google Scholar 

  39. Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to AbdolVahab Khalili Sadaghiani or Behjat Forouzandeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili Sadaghiani, A., Forouzandeh, B. Image interpolation based on 2D-DWT and HDP-HMM. Pattern Anal Applic 25, 361–377 (2022). https://doi.org/10.1007/s10044-022-01057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01057-4

Keyword

Navigation