Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

4-D pattern structure features by three stages clustering algorithm for image analysis and classification

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

An approach for decomposition of visual image by clustering, pattern analysis and classification by structure features is considered. Hierarchical clusters such as rectangles, closed regions and integrated areas are objects of investigation. By hierarchically constructed fragments, the 4-D pattern structure features are formulated. To reduce the clustering algorithm complexity, the scanning area approach is proposed. The results of pattern analysis and classification by structure features for some images are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vailaya A, Jain AK, Zhang HJ (1998) On image classification: city vs. landscape. Pattern Recogn 31:1921–1935

    Article  Google Scholar 

  2. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vision 7(1):11–32

    Article  Google Scholar 

  3. Nezamabadi-pour H, Kabir E (2004) Image retrieval using histograms of unicolor and bicolor blocas and direccional changes in intensity gradient. Pattern Recogn Lett 25(14):1547–1557

    Article  Google Scholar 

  4. Mokhtarian F, Abbasi S (2002) Shape similatity retrieval under affine transforms. Pattern Recogn 35:31–41

    Article  MATH  Google Scholar 

  5. Jain AK, Vailaya A (1996) Image retrieval using color and shape. Pattern Recogn 29(8):1233–1244

    Article  Google Scholar 

  6. Manjunath BS, Ma WY (1996) Texture feature for browsing and retrieval of image data. IEEE PAMI 8(18):837–842

    Article  Google Scholar 

  7. Smith JR, Li CS (1999) Image classification and quering using composite region templates. Academic Press, Computer Vision and Understanding 75:165–174

    Article  Google Scholar 

  8. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantic sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Article  Google Scholar 

  9. Yoo HW, Jung SH, Jang DH, Na YK (2002) Extraction of major object features using VQ clustering for content-based image retrieval. Pattern Recogn 35:1115–1126

    Article  MATH  Google Scholar 

  10. Szummer M, Picard RW (1998) Indoor-outdoor image classification. In: IEEE international workshop on content-based access of image and video database (ICCV’98), pp 42–51

  11. Minka TP, Picard RW (1997) Interactive learning using a society of models. Pattern Recogn 30(3):565

    Article  Google Scholar 

  12. Burl MC, Weber M, Perona P (1998) A probabilistic approach to object recognition using local photometry and global geometry. In: Proceedings of European conferene on computer vision, pp 628–641

  13. Wang JZ, Fishler MA (1998) Visual similarity, judgmental certainty and stereo correspondence. In: Proceedings of DARPA image understanding workshop

  14. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22(3):954–961

    Article  Google Scholar 

  15. Dosil R, Pardo XM, Fdez-Vidal XR (2005) Decomposition of three-dimensional medical images into visual patterns. IEEE Trans Biomed Eng 52(12):2115–2121

    Article  Google Scholar 

  16. Hong L, Wan Y, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789

    Article  Google Scholar 

  17. Karypis G, Han E, Kumar V (1999) Chameleon: a hierarchical clustering algorithm using dynamic modeling. Computer 32:68–75

    Article  Google Scholar 

  18. Wang Database with 1000 Images (2009). http://wang.ist.psu.edu/~jwang/test1.tar

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Melnyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnyk, R., Tushnytskyy, R. 4-D pattern structure features by three stages clustering algorithm for image analysis and classification. Pattern Anal Applic 16, 201–211 (2013). https://doi.org/10.1007/s10044-013-0326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-013-0326-x

Keywords

Navigation