Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

One dimensional local binary pattern for bone texture characterization

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The evaluation of osteoporotic disease from X-ray images presents a major challenge for pattern recognition and medical applications. Textured images from the bone microarchitecture of osteoporotic and healthy subjects show a high degree of similarity, thus drastically increasing the difficulty of classifying such textures. In this paper, we propose a new method to separate osteoporotic cases from healthy controls, using texture analysis. The idea consists in combining global and local information to better capture the image characteristics. Global information is characterized by image projection which conveys information about the global aspect of the texture. Local information is encoded by the local patterns using neighborhood operators. The proposed technique is based on the local binary pattern (LBP) descriptor which has been classically applied on two dimensional (2D) images. Our algorithm is a derived solution for the 1D projected fields of the 2D images. Experiments were conducted on two populations of osteoporotic patients and control subjects. Compared to the classical LBP, the proposed approach yields a better classification rate of the two populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W (1994) Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 9(12):1909–1918

    Article  Google Scholar 

  2. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, Ohley W, Pothuaud L (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16(4):697–704

    Article  Google Scholar 

  3. Caligiuri P, Giger ML, Favus MJ, Jia H, Doi K, Dixon LB (1993) Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186(2):471–474

    Google Scholar 

  4. Chen J, Shan S, He C, Zhao G (2010) Wld: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720

    Article  Google Scholar 

  5. Compston JE, Mellish RW, Garrahan NJ (1987) Age-related changes in iliac crest trabecular microanatomic bone structure in man. Bone 8(5):289–292

    Article  Google Scholar 

  6. Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15(1):20–23

    Article  Google Scholar 

  7. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York

  8. Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, Nevitt MC, Fox KM, Cummings SR (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10(11):1778–1787

    Article  Google Scholar 

  9. Fawcett T (2006) An introduction to roc analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  10. Genant HK, Engelke K, Fuerst T, Gler CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11(6):707–730

    Article  Google Scholar 

  11. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  12. Hafiane A, Seetharaman G, Palaniappan K, Zavidovique B (2008) Rotationally invariant hashing of median binary patterns for texture classification. Lect Notes Comput Sci 5112/2008, 619–629

    Google Scholar 

  13. Hou TH, Pern MD (1999) A computer vision-based shape classification system using image projection and a neural network. Int J Adv Manuf Technol 15(11), 843–850

    Google Scholar 

  14. Jennane R, Harba R, Lemineur G, Bretteil S, Estrade A, Benhamou CL (2007) Estimation of the 3d self-similarity parameter of trabecular bone from its 2d projection. Med Image Anal 11(1):91–98

    Article  Google Scholar 

  15. Jennane R, Ohley WJ, Majumdar S, Lemineur G (2001) Fractal analysis of bone X-ray tomographic microscopy projections. IEEE Trans Med Imaging 20(5):443–449

    Article  Google Scholar 

  16. Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med A 103(2), 20S–25S (discussion 25S–26S)

    Google Scholar 

  17. Langenberger H, Shimizu Y, Windischberger C, Grampp S, Berg A, Ferlitsch K, Moser E (2003) Bone homogeneity factor: an advanced tool for the assessment of osteoporotic bone structure in high-resolution magnetic resonance images. Invest Radiol 38(7):467–472

    Google Scholar 

  18. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  19. Lespessailles E, Eynard E, Royant V, Terem C, Valverde D, Harba R, Benhamou C (1996) Effects of age and menopause on the fractal dimension of trabecular bone determined on calcaneus radiographs. J Bone Miner Res 11:473

    Google Scholar 

  20. Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Viala JF, Benhamou CL (1996) Anisotropy measurements obtained by fractal analysis of trabecular bone at the calcaneus and radius. Rev Rhum Engl Ed 63(5):337–343

    Google Scholar 

  21. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  22. Link TM, Majumdar S, Lin JC, Augat P, Gould RG, Newitt D, Ouyang X, Lang TF, Mathur A, Genant HK (1998) Assessment of trabecular structure using high resolution ct images and texture analysis. J Comput Assist Tomogr 22(1):15–24

    Article  Google Scholar 

  23. Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (1999) Relationship between plain radiographic patterns and three- dimensional trabecular architecture in the human calcaneus. Osteoporos Int 9(4):339–345

    Article  Google Scholar 

  24. NIH (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650

    Google Scholar 

  25. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  26. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  27. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. report of the asbmr histomorphometry nomenclature committee. J Bone Miner Res 2(6):595–610

    Article  Google Scholar 

  28. Petrou M, Sevilla PG (2006) Image processing: dealing with texture. Wiley, New York

  29. Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to threedimensional microarchitecture. J Bone Miner Res 15(4):691–699

    Article  Google Scholar 

  30. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2d projection images (tbs) and 3d microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42(4):775–787

    Article  Google Scholar 

  31. Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, Benhamou CL (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 8(6):618–625

    Article  Google Scholar 

  32. Taleb-Ahmed A, Dubois P, Duquenoy E (2003) Analysis methods of ct-scan images for the characterization of the bone texture: first results. Pattern Recogn Lett 24:1971–1982

    Article  Google Scholar 

  33. Tuceryan M, Jain AK (1993) Texture analysis. Handbook of pattern recognition & computer vision pp 235–276

  34. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81

    Google Scholar 

  35. Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision 1:786–791

  36. Zhou W, Ahrary A, Kamata SI (2010) Image description with 1d local patterns by multi-scans: an application to face recognition. In: IEEE 17th international conference on image processing, pp 4553–4556

Download references

Acknowledgments

This work is part of the FRACTOS project supported by the Region Centre (France). We gratefully acknowledge the Region Centre for its support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Hafiane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houam, L., Hafiane, A., Boukrouche, A. et al. One dimensional local binary pattern for bone texture characterization. Pattern Anal Applic 17, 179–193 (2014). https://doi.org/10.1007/s10044-012-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-012-0288-4

Keywords

Navigation