Abstract
The evaluation of osteoporotic disease from X-ray images presents a major challenge for pattern recognition and medical applications. Textured images from the bone microarchitecture of osteoporotic and healthy subjects show a high degree of similarity, thus drastically increasing the difficulty of classifying such textures. In this paper, we propose a new method to separate osteoporotic cases from healthy controls, using texture analysis. The idea consists in combining global and local information to better capture the image characteristics. Global information is characterized by image projection which conveys information about the global aspect of the texture. Local information is encoded by the local patterns using neighborhood operators. The proposed technique is based on the local binary pattern (LBP) descriptor which has been classically applied on two dimensional (2D) images. Our algorithm is a derived solution for the 1D projected fields of the 2D images. Experiments were conducted on two populations of osteoporotic patients and control subjects. Compared to the classical LBP, the proposed approach yields a better classification rate of the two populations.
Similar content being viewed by others
References
Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W (1994) Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 9(12):1909–1918
Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, Ohley W, Pothuaud L (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16(4):697–704
Caligiuri P, Giger ML, Favus MJ, Jia H, Doi K, Dixon LB (1993) Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186(2):471–474
Chen J, Shan S, He C, Zhao G (2010) Wld: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720
Compston JE, Mellish RW, Garrahan NJ (1987) Age-related changes in iliac crest trabecular microanatomic bone structure in man. Bone 8(5):289–292
Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15(1):20–23
Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York
Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, Nevitt MC, Fox KM, Cummings SR (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10(11):1778–1787
Fawcett T (2006) An introduction to roc analysis. Pattern Recognit Lett 27(8):861–874
Genant HK, Engelke K, Fuerst T, Gler CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11(6):707–730
Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663
Hafiane A, Seetharaman G, Palaniappan K, Zavidovique B (2008) Rotationally invariant hashing of median binary patterns for texture classification. Lect Notes Comput Sci 5112/2008, 619–629
Hou TH, Pern MD (1999) A computer vision-based shape classification system using image projection and a neural network. Int J Adv Manuf Technol 15(11), 843–850
Jennane R, Harba R, Lemineur G, Bretteil S, Estrade A, Benhamou CL (2007) Estimation of the 3d self-similarity parameter of trabecular bone from its 2d projection. Med Image Anal 11(1):91–98
Jennane R, Ohley WJ, Majumdar S, Lemineur G (2001) Fractal analysis of bone X-ray tomographic microscopy projections. IEEE Trans Med Imaging 20(5):443–449
Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med A 103(2), 20S–25S (discussion 25S–26S)
Langenberger H, Shimizu Y, Windischberger C, Grampp S, Berg A, Ferlitsch K, Moser E (2003) Bone homogeneity factor: an advanced tool for the assessment of osteoporotic bone structure in high-resolution magnetic resonance images. Invest Radiol 38(7):467–472
Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278
Lespessailles E, Eynard E, Royant V, Terem C, Valverde D, Harba R, Benhamou C (1996) Effects of age and menopause on the fractal dimension of trabecular bone determined on calcaneus radiographs. J Bone Miner Res 11:473
Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Viala JF, Benhamou CL (1996) Anisotropy measurements obtained by fractal analysis of trabecular bone at the calcaneus and radius. Rev Rhum Engl Ed 63(5):337–343
Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118
Link TM, Majumdar S, Lin JC, Augat P, Gould RG, Newitt D, Ouyang X, Lang TF, Mathur A, Genant HK (1998) Assessment of trabecular structure using high resolution ct images and texture analysis. J Comput Assist Tomogr 22(1):15–24
Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (1999) Relationship between plain radiographic patterns and three- dimensional trabecular architecture in the human calcaneus. Osteoporos Int 9(4):339–345
NIH (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650
Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59
Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. report of the asbmr histomorphometry nomenclature committee. J Bone Miner Res 2(6):595–610
Petrou M, Sevilla PG (2006) Image processing: dealing with texture. Wiley, New York
Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to threedimensional microarchitecture. J Bone Miner Res 15(4):691–699
Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2d projection images (tbs) and 3d microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42(4):775–787
Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, Benhamou CL (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 8(6):618–625
Taleb-Ahmed A, Dubois P, Duquenoy E (2003) Analysis methods of ct-scan images for the characterization of the bone texture: first results. Pattern Recogn Lett 24:1971–1982
Tuceryan M, Jain AK (1993) Texture analysis. Handbook of pattern recognition & computer vision pp 235–276
Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81
Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision 1:786–791
Zhou W, Ahrary A, Kamata SI (2010) Image description with 1d local patterns by multi-scans: an application to face recognition. In: IEEE 17th international conference on image processing, pp 4553–4556
Acknowledgments
This work is part of the FRACTOS project supported by the Region Centre (France). We gratefully acknowledge the Region Centre for its support
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Houam, L., Hafiane, A., Boukrouche, A. et al. One dimensional local binary pattern for bone texture characterization. Pattern Anal Applic 17, 179–193 (2014). https://doi.org/10.1007/s10044-012-0288-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10044-012-0288-4