Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework for foreground/background document image segmentation

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

The presence of noise in images of degraded documents limits the direct application of segmentation approaches and can lead to the presence of a number of different artifacts in the final segmented image. A possible solution is the integration of a pre-filtering step which may improve the segmentation quality through the reduction of such noise. This study demonstrated that combining the Mean-Shift clustering algorithm and the tensor-driven diffusion process into a joint iterative framework produced promising results. For instance, this framework generates segmented images with reduced edge and background artifacts when compared to results obtained after applying each method separately. This improvement is explained by the mutual interaction of global and local information, introduced, respectively, by the Mean-Shift and the anisotropic diffusion. Another point of note is that the anisotropic diffusion process smoothed images while preserving edge continuities. The convergence of this framework was defined automatically under a stopping criterion not previously defined when the diffusion process was applied alone. To obtain a fast convergence, the common framework utilizes the speedup algorithm of the Fukunaga and Hostetler Mean-Shift formulation already proposed by Lebourgeois et al. (International Conference on Document Analysis and Recognition (ICDAR), pp 52–56, 2013). This new variant of the Mean-Shift algorithm produced similar results to the original one, but ran faster due to the application of the integral volume. The first application of this framework was document ink bleed-through removal where noise is stemmed from the interference of the verso side on the recto side, thus perturbing the legibility of the original text. Other categories of images could also be subjected to the proposed framework application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(source: Chatillon-sur-Chalaronne)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.site.uottawa.ca/~edubois/documents/.

  2. http://www.gazettes18e.fr/gazette-leyde.

References

  1. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean-shift. J. Image Vis. Comput. 22(1), 73–81 (2004)

  2. Beevi, S.Z., Sathik, M.M.: A robust segmentation approach for noisy medical images using fuzzy clustering with spatial probability. Eur. J. Sci. Res. 41, 437–451 (2010)

    Google Scholar 

  3. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967). doi:10.1016/0041-5553(67)90040-7

    Article  MathSciNet  Google Scholar 

  4. Cheng, Y. : Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

  5. Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 25(2), 281–288 (2003)

    Article  Google Scholar 

  6. Comaniciu, D., Meer, P.: Mean-shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 24(5), 603–619 (2002)

    Article  Google Scholar 

  7. Derin, H., Elliott, H.: Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 9, 39–55 (1987)

    Article  Google Scholar 

  8. Dong, G., Xie, M.: Color clustering and learning for image segmentation based on neural networks. IEEE Trans. Neural Netw. 16, 925–936 (2005)

    Article  Google Scholar 

  9. Drira, F.: Towards restoring historic documents degraded over time. In: IEEE International Conference on Document Image Analysis for Libraries (DIAL2006), pp. 350–357 (2006). doi:10.1109/dial.2006.43

  10. Drira, F., LeBourgeois, F., Emptoz, H.: Restoring ink bleed-through degraded document images using a recursive unsupervised classification technique. In: IAPR Workshop on Document Analysis Systems (DAS), 3872, pp. 38–49 (2006)

  11. Drira, F., Lebourgeois, F., Emptoz, H.: Restoring ink bleed-through degraded document images using a recursive unsupervised classification technique. In: Document Analysis Systems (DAS), pp. 38–49 (2006)

  12. Drira, F., Lebourgeois, F., Emptoz, H.: A modified mean-shift algorithm for efficient document image restoration. In: Signal Processing for Image Enhancement and Multimedia Processing, pp. 13–25 (2008)

  13. Drira, F., Lebourgeois, F., Emptoz, H.: Document images restoration by a new tensor based diffusion process: application to the recognition of old printed documents. In: 10th International Conference on Document Analysis and Recognition (ICDAR), vol. 17, pp. 321–325 (2009)

  14. Drira, F., Lebourgeois, F., Emptoz, H.: A new PDE-based approach for singularity-preserving regularization: application to degraded characters restoration. Int. J. Doc. Anal. Recognit. (IJDAR) 15, 183–212 (2012). doi:10.1007/s10032-011-0165-5

    Article  Google Scholar 

  15. Freedman, D., Kisilev, P., Haifa, I.: Fast mean-shift by compact density representation. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1818–1825 (2009)

  16. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function. IEEE Trans. Inf. Theory 21, 32–40 (1975)

    Article  MATH  Google Scholar 

  17. Gatos, B., Ntirogiannis, K., Pratikakis, I.: DIBCO 2009: document image binarization contest. Int. J. Doc. Anal. Recognit. (IJDAR) 14, 35–44 (2011)

    Article  Google Scholar 

  18. Guo, H., Guo, P., Lu, H.: A fast mean-shift procedure with new iteration strategy and re-sampling. In: IEEE International Conference Systems, Man and Cybernetics (SMC), pp. 2385–2389 (2006)

  19. Haralick, R., Shaprio, L.: Image segmentation techniques. In: Computer Vision and Graphics and Image Processing, pp. 100–132 (1985)

  20. Huang, Y., Brown, M.S., Xu, D.: User-assisted ink-bleed reduction. IEEE Trans. Image Process. 19(10), 2646–2658 (2010)

  21. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39, 111–129 (2000)

    Article  MATH  Google Scholar 

  22. Lebourgeois, F., Drira, F., Gaceb, D., Duong, J.: Fast integral mean-shift: application to color segmentation of document images. In: International Conference on Document Analysis and Recognition (ICDAR) pp. 52–56 (2013)

  23. Leventon, M.E., Grimson, E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1316–1323 (2000)

  24. Manjunath, B.S., Simchony, T., Chellappa, R.: Stochastic and deterministic network for texture segmentation. IEEE Trans. Acoust. Speech Signal Process. 38, 1039–1049 (1990)

    Article  Google Scholar 

  25. Moghaddam, R.F., Cheriet, M.: EFDM: restoration of single-sided low-quality document images. In: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR’2008), pp. 204–209 (2008)

  26. Moghaddam, R.F., Cheriet, M.: RSLDI: restoration of single-sided low-quality document images. Pattern Recognit. Spec. Issue Handwrit. Recognit. 42, 3355–3364 (2009)

    Article  MATH  Google Scholar 

  27. Nikolaou, N., Papamarkos, N.: Color reduction for complex document images. Int. J. Imaging Syst. Technol. 19(1), 14–26 (2009)

  28. Ntirogiannis, K., Gatos, B., Pratikakis, I.: ICFHR 2012 competition on handwritten document image binarization (H-DIBCO 2012). In: International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 817–822 (2012)

  29. Ntirogiannis, K., Gatos, B., Pratikakis, I.: ICFHR2014 competition on handwritten document image binarization (H-DIBCO 2014). In: International Conference on Frontiers in Handwriting Recognition (ICFHR) pp. 809–813 (2014)

  30. Pal, N.R., Pal, S.: A review on image segmentation techniques. Pattern Recognit. (PR) 26, 1277–1294 (1993)

    Article  Google Scholar 

  31. Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean-shift. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR’07), vol. 2, pp. 1–8 (2007)

  32. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 17, 629–639 (1990)

    Article  Google Scholar 

  33. Pham, D., Xu, C., Prince, J.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  34. Perona, P., Shiota, T., Malik, J.: Anisotropic diffusion. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 229–254 (1994)

  35. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2011 document image binarization contest (DIBCO 2011). In: International Conference on Document Analysis and Recognition (ICDAR), pp. 1506–1510 (2011)

  36. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2013 document image binarization contest (DIBCO 2013). In: International Conference on Document Analysis and Recognition (ICDAR), pp. 1471–1476 (2013)

  37. Praveena, S.M., IlaVennila, D.: Optimization fusion approach for image segmentation using k-means algorithm. IEEE Trans. Neural Netw. 7, 680–957 (2010)

    Google Scholar 

  38. Qua, W., Huangb, X., Jiac, Y.: Segmentation in noisy medical images using PCA model based particle filtering. In: Proceedings of the SPIE, vol. 6914 (2008)

  39. Rowley-Brooke, R., Kokaram, A.: Bleed-through removal in degraded documents. In: Proceedings of SPIE 8297, Document Recognition and Retrieval, vol. XIX (2012)

  40. Rowley-Brooke, R., Pitie, F., Kokaram, A.: A ground truth bleed-through document image database. In: Theory and Practice of Digital Libraries, vol. 7489, pp. 185–196 (2012)

  41. Sochen, N., Kimmel, R., Malladi, R.: A geometrical framework for low level vision. IEEE Trans. Image Process. Spec. Issue PDE Based Image Process. 7, 310–318 (1998)

    Article  MATH  Google Scholar 

  42. Stamatopoulos, N., Gatos, B., Perantonis, S.J.: A method for combining complementary techniques for document image segmentation. Pattern Recognit. (PR) 42, 3158–3168 (2009)

    Article  MATH  Google Scholar 

  43. Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  44. Tonazzini, A., Salerno, E., Bedini, L.: Fast correction of bleed-through distortion in grayscale documents by a blind source separation technique. Int. J. Doc. Anal. Recognit. (IJDAR) 10, 17–25 (2007)

  45. Trivedi, M., Bezdek, J.: Low-level segmentation of aerial images with fuzzy clustering. IEEE Trans. Syst. Man Cybern. 164, 589–598 (1986)

    Article  Google Scholar 

  46. Tschumperle, D., Deriche, R.: Vector valued image regularization with pdes: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 27(4), 506–517 (2005)

    Article  Google Scholar 

  47. Wagner, R., Fisher, M.: The string to string correction problem. J. ACM (JACM) 21, 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, P., Lee, D., Gray, A., Rehg, J.: Fast mean-shift with accurate and stable convergence. In: International Conference on Artificial Intelligence and Statistics (AISTATS) (2007)

  49. Weickert, J.: Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor. Report No. 110. Laboratory of Technomathematics, University of Kaiserslautern (1994)

  50. Wolf, C.: Document ink bleed-through removal with two hidden markov random fields and a single observation field. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 32, 431–447 (2010)

    Article  Google Scholar 

  51. Xiao, C.: Efficient mean-shift clustering using Gaussian KD-tree. Comput. Graph. Forum J. 7, 2065–2073 (2010)

    Article  Google Scholar 

  52. Yang, C., Duraiswami, R., DeMenthon, D., Davis, L.: Mean-shift analysis using quasi-Newton methods. In: International Conference on Image Processing (ICIP), pp. 447–450 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadoua Drira.

Appendix: Calculation of the diffusion velocity

Appendix: Calculation of the diffusion velocity

figure h
figure i

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drira, F., LeBourgeois, F. Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework for foreground/background document image segmentation. IJDAR 20, 201–222 (2017). https://doi.org/10.1007/s10032-017-0285-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-017-0285-7

Keywords

Navigation