Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pseudo linear pricing rule for utility indifference valuation

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model, and provides two linear approximations for the utility indifference price. The key tool is a probabilistic representation for the utility indifference price by the solution of a functional differential equation, which is termed pseudo linear pricing rule. We also provide an alternative derivation of the quadratic BSDE representation for the utility indifference price.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank one of the referees for the suggestion of this method.

References

  1. Ankirchner, S., Imkeller, P., dos Reis, G.: Classical and variational differentiability of BSDEs with quadratic growth. Electron. J. Probab. 12, 1418–1453 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ankirchner, S., Imkeller, P., Popier, A.: On measure solutions of backward stochastic differential equations. Stoch. Process. Appl. 119, 2744–2772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ankirchner, S., Imkeller, P., dos Reis, G.: Pricing and hedging of derivatives based on non-tradable underlyings. Math. Finance 20, 289–312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrieu, P., El Karoui, N.: Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs. Ann. Probab. 41, 1831–1863 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Becherer, D.: Rational hedging and valuation of integrated risks under constant absolute risk aversion. Insur. Math. Econ. 33, 1–28 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Becherer, D.: Bounded solutions to backward SDEs with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16, 2027–2054 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bielecki, T.R., Jeanblanc, M.: Indifference pricing of defaultable claims. In: Carmona, R. (ed.) Indifference Pricing, Theory and Applications, pp. 211–240. Princeton University Press, Princeton (2009)

    Google Scholar 

  8. Briand, P., Elie, R.: A simple constructive approach to quadratic BSDEs with or without delay. Stoch. Process. Appl. 123, 2921–2939 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields 136, 604–618 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Fields 141, 543–567 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carmona, R. (ed.): Indifference Pricing, Theory and Applications. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  12. Casserini, M., Liang, G.: Fully coupled forward-backward stochastic dynamics and functional differential systems. Preprint (2011). arXiv:1112.4978v1

  13. Davis, M.H.A.: Optimal hedging with basis risk. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) Second Bachelier Colloquium on Stochastic Calculus and Probability, pp. 169–187. Springer, Berlin (2006)

    Google Scholar 

  14. Delarue, F.: Estimates of the solutions of a system of quasi-linear PDEs: a probabilistic scheme. In: Azéma, J., Émery, M., Ledoux, M., Yor, M. (eds.) Séminaire de Probabilités XXXVII. Lecture Notes in Math., vol. 1832, pp. 290–332 (2003)

    Chapter  Google Scholar 

  15. Delbaen, F., Hu, Y., Bao, X.: Backward SDEs with superquadratic growth. Probab. Theory Relat. Fields 150, 145–192 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Delbaen, F., Hu, Y., Richou, A.: On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions. Ann. Inst. Henri Poincaré Probab. Stat. 47, 559–574 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. El Karoui, N., Peng, S., Quenez, M.: Backward SDEs in finance. Math. Finance 7, 1–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. El Karoui, N., Matoussi, A., Ngoupeyou, A.: Quadratic BSDE with jumps and unbounded terminal condition. Preprint (2012). http://perso.univ-lemans.fr/~amatou/Recherche.html

  19. Frei, C., Schweizer, M.: Exponential utility indifference valuation in two Brownian settings with stochastic correlation. Adv. Appl. Probab. 40, 401–423 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Frei, C., Schweizer, M.: Exponential utility indifference valuation in a general semimartingale model. In: Delbaen, F., Rásonyi, M., Stricker, C. (eds.) Optimality and Risk: Modern Trends in Mathematical Finance, pp. 49–86. Springer, Berlin (2009)

    Google Scholar 

  21. Frei, C., Malamud, S., Schweizer, M.: Convexity bounds for BSDE solutions, with applications to indifference valuation. Probab. Theory Relat. Fields 150, 219–255 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Henderson, V.: Valuation of claims on nontraded assets using utility maximization. Math. Finance 12, 351–373 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Henderson, V., Hobson, D.: Substitute hedging. Risk 15, 71–75 (2002) (Reprinted in Exotic Options: The Cutting Edge Collection, RISK Books, London, 2003)

    Google Scholar 

  24. Henderson, V., Hobson, D.: Utility indifference pricing: an overview. In: Carmona, R. (ed.) Indifference Pricing, Theory and Applications, pp. 44–74. Princeton University Press, Princeton (2009)

    Google Scholar 

  25. Hu, Y., Imkeller, P., Müller, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15, 1691–1712 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Imkeller, P., Réveillac, A., Richter, A.: Differentiability of quadratic BSDE generated by continuous martingales and hedging in incomplete markets. Ann. Appl. Probab. 22, 285–336 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kazamaki, N.: Continuous Exponential Martingales and BMO. Lecture Notes in Mathematics, vol. 1579. Springer, Berlin (1994)

    MATH  Google Scholar 

  28. Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558–602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liang, G., Lyons, T., Qian, Z.: Backward stochastic dynamics on a filtered probability space. Ann. Probab. 39, 1422–1448 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mania, M., Schweizer, M.: Dynamic exponential utility indifference valuation. Ann. Appl. Probab. 15, 2113–2143 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mocha, M., Westray, N.: Quadratic semimartingale BSDEs under an exponential moment condition. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités XLIV. Lecture Notes in Math., vol. 2046, pp. 105–139 (2012)

    Chapter  Google Scholar 

  32. Morlais, M.A.: Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem. Finance Stoch. 13, 121–150 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences. Finance Stoch. 8, 229–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Quenez, M.C.: Stochastic control and BSDEs. In: El Karoui, N., Mazliak, L. (eds.) Backward Stochastic Differential Equations (Paris, 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 83–99. Longman, Harlow (1997)

    Google Scholar 

  35. Tehranchi, M.: Explicit solutions of some utility maximization problems in incomplete markets. Stoch. Process. Appl. 114, 109–125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tevzadze, R.: Solvability of backward stochastic differential equations with quadratic growth. Stoch. Process. Appl. 118, 503–515 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the editor Martin Schweizer, an Associate Editor, and two referees for their valuable suggestions, and Damiano Brigo, Rama Cont, David Hobson, Monique Jeanblanc, Lishang Jiang, Eva Lütkebohmert, Andrea Macrina, Shige Peng, Xingye Yue, and Thaleia Zariphopoulou for helpful discussions. The authors thank participants in seminars at the University of Freiburg, and King’s College London, and at the Sino-French Summer Institute in Stochastic Modeling and Applications (Beijing, June 2011), Stochastic Analysis: A UK–China Workshop (Loughborough, July 2011), and the Fourth International Conference: Mathematics in Finance (South Africa, August 2011) where work in progress was presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Henderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henderson, V., Liang, G. Pseudo linear pricing rule for utility indifference valuation. Finance Stoch 18, 593–615 (2014). https://doi.org/10.1007/s00780-014-0235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-014-0235-x

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation