Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Asymptotic analysis for stochastic volatility: martingale expansion

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

A general class of stochastic volatility models with jumps is considered and an asymptotic expansion for European option prices around the Black–Scholes prices is validated in the light of Yoshida’s martingale expansion theory. Several known formulas of regular and singular perturbation expansions are obtained as corollaries. An expansion formula for the Black–Scholes implied volatility is given which explains the volatility skew and term structure. The leading term of the expansion is always an affine function of log moneyness, while the term structure of the coefficients depends on the details of the underlying stochastic volatility model. Several specific models which represent various types of term structure are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alós, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Conlon, J.G., Sullivan, M.G.: Convergence to Black–Scholes for ergodic volatility models. Eur. J. Appl. Math. 16, 385–409 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fouque, J.P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Fouque, J.P., Papanicolaou, G., Sircar, R., Solna, K.: Singular perturbations in option pricing. SIAM J. Appl. Math. 63, 1648–1665 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fouque, J.P., Papanicolaou, G., Sircar, R., Solna, K.: Multiscale stochastic volatility asymptotics. Multiscale Model. Simul. 2, 22–42 (2003)

    Article  MathSciNet  Google Scholar 

  6. Fouque, J.P., Papanicolaou, G., Sircar, R., Solna, K.: Maturity cycles in implied volatility. Finance Stoch. 8, 451–477 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fouque, J.P., Papanicolaou, G., Sircar, R., Solna, K.: Timing the smile. Wilmott Mag. Mar/Apr, 59–65 (2004)

    Article  Google Scholar 

  8. Fouque, J.P., Sircar, R., Solna, K.: Stochastic volatility effects on defaultable bonds. Appl. Math. Finance 13, 215–244 (2006)

    Article  MATH  Google Scholar 

  9. Fukasawa, M.: Edgeworth expansion for ergodic diffusions. Probab. Theory Relat. Fields 142, 1–20 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fukasawa, M.: Asymptotic analysis for stochastic volatility: edgeworth expansion (2008, submitted). http://arxiv.org/abs/1004.2106

  11. Hagan, P.S., Kumar, D., Lesniewski, S., Woodward, D.E.: Managing smile risk. Wilmott Mag. 18(11), 84–108 (2002)

    Google Scholar 

  12. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  13. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)

    Article  Google Scholar 

  14. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  15. Khasminskii, R.Z., Yin, G.: Uniform asymptotic expansions for pricing European options. Appl. Math. Optim. 52, 279–296 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee, R.W.: Implied and local volatilities under stochastic volatility. Int. J. Theor. Appl. Finance 4, 45–89 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Lewis, A.L.: Option Valuation under Stochastic Volatility, with Mathematica Code. Finance Press, Newport Beach (2000)

    MATH  Google Scholar 

  18. Masuda, H., Yoshida, N.: Asymptotic expansion for Barndorff–Nielsen and Shephard’s stochastic volatility model. Stoch. Process. Appl. 115, 1167–1186 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nicolato, E., Venardos, E.: Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type. Math. Finance 13, 445–466 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nelson, D.B.: ARCH models as diffusion approximations. J. Econom. 45, 7–38 (1990)

    Article  MATH  Google Scholar 

  21. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications (New York). Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Osajima, Y.: The asymptotic expansion formula of implied volatility for dynamic SABR model and FX hybrid model. UTMS preprint series. The University of Tokyo (2006). http://faculty.ms.u-tokyo.ac.jp/users/preprint/preprint2006.html

  23. Renault, E., Touzi, N.: Option hedging and implicit volatilities. Math. Finance 6, 279–302 (1996)

    Article  MATH  Google Scholar 

  24. Yoshida, N.: Asymptotic expansion for statistics related to small diffusions. J. Jpn. Stat. Soc. 22, 139–159 (1992)

    MATH  Google Scholar 

  25. Yoshida, N.: Malliavin calculus and asymptotic expansion for martingales. Probab. Theory Relat. Fields 109, 301–342 (1997)

    Article  MATH  Google Scholar 

  26. Yoshida, N.: Malliavin calculus and martingale expansion. Bull. Sci. Math. 125, 431–456 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Fukasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukasawa, M. Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch 15, 635–654 (2011). https://doi.org/10.1007/s00780-010-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-010-0136-6

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation