Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Several factors (including diets, changes in intestinal fluora, and hormones) regulate postnatal intestinal growth and development. Based on the early studies involving modification of the adrenal gland, pituitary gland or hypothalamus, exogenous glucocorticoids and glucocorticoid receptor antagonists are now used to study glucocorticoid-mediated metabolism of amino acids in the small intestine. Findings from these studies indicate that physiological levels of glucocorticoids stimulate the catabolism of glutamine and proline for the synthesis of citrulline and arginine in enterocytes during weaning. In addition, increases in circulating levels of glucocorticoids enhance expression of arginase, proline oxidase and ornithine decarboxylase, as well as polyamine synthesis from arginine and proline in enterocytes. These actions of the hormones promote intestinal maturation and may have therapeutic effects on intestinal disease (e.g., necrotizing enterocolitis). Molecular aspects, species-specific effects, and developmental responsiveness to glucocorticoids should be taken into consideration in designing both experimental and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASL:

Argininosuccinate lyase

ASS:

Argininosuccinate synthase

P5C:

Pyrroline-5-carboxylate

P5CS:

Pyrroline-5-carboxylate synthase

References

  • Aragao C, Corte-Real J, Costas B et al (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids 34:143–148

    Article  PubMed  CAS  Google Scholar 

  • Ball RO, Atkinson JL, Bayley HS (1986) Proline as an essential amino acid for the young pig. Br J Nutr 55:659–668

    Article  PubMed  CAS  Google Scholar 

  • Batt RM, Rutgers HC, Sancak AA (1996) Enteric bacteria: friend or foe? J Small Anim Pract 37:261–267

    Article  PubMed  CAS  Google Scholar 

  • Bauer CR, Morrison JC, Poole WK et al (1984) A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics 73:682–688

    PubMed  CAS  Google Scholar 

  • Burrin DG, Wester TJ, Davis TA et al (1999) Dexamethasone inhibits small intestinal growth via increased protein catabolism in neonatal pigs. Am J Physiol Endocrinol Metab 276:E269–E277

    CAS  Google Scholar 

  • Castillo RO, Glasscock GF, Noren KM, Reisenauer AM (1991) Pituitary regulation of postnatal small intestinal ontogeny in the rat: differential regulation of digestive hydrolase maturation by thyroxine and growth hormone. Endocrinology 129:1417–1423

    PubMed  CAS  Google Scholar 

  • Chapple RP, Cuaron JA, Easter RA (1989) Response of digestive carbohydrases and growth to graded doses and administration frequency of hydrocortisone and adrenocorticotropic hormone in nursing piglets. J Anim Sci 67:2974–2984

    PubMed  CAS  Google Scholar 

  • Collington GK, Parker DS, Armstrong DG (1990) The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig. Br J Nutr 64:59–70

    Article  PubMed  CAS  Google Scholar 

  • Crowley P, Chalmers I, Keirse MJ (1990) The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol 97:11–25

    PubMed  CAS  Google Scholar 

  • Davis PK, Wu G (1998) Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp Biochem Physiol B 119:527–537

    Article  PubMed  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2008) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem. doi:10.1016/j.jnutbio.2008.05.014

  • Dorhout B, van Beusekom CM, Huisman M et al (1996) Estimation of 24-hour polyamine intake from mature human milk. J Pediatr Gastroenterol Nutr 23:298–302

    Article  PubMed  CAS  Google Scholar 

  • Dugan ME, Knabe DA, Wu G (1995) The induction of citrulline synthesis from glutamine in enterocytes of weaned pigs is not due primarily to age or change in diet. J Nutr 125:2388–2393

    PubMed  CAS  Google Scholar 

  • Elnif J, Sangild PT (1996) The role of glucocorticoids in the growth of the digestive tract in mink (Mustela vison). Comp Biochem Physiol A 115:37–42

    Article  CAS  Google Scholar 

  • Espinoza J, Hritz A, Kaplan R et al (1975) Regional variation in glycolytic enzyme adaptation to dietary sugars in rat small intestine. Am J Clin Nutr 28:453–458

    PubMed  CAS  Google Scholar 

  • Espinoza J, Clark SB, Hritz A, Rosensweig NS (1976) Regulation of rat proximal intestinal glycolytic enzyme activity by ileal perfusion with glucose. Gastroenterology 71:295–298

    PubMed  CAS  Google Scholar 

  • Fan J, Gong XQ, Wu J et al (1994) Effect of glucocorticoid receptor (GR) blockade on endotoxemia in rats. Circ Shock 42:76–82

    PubMed  CAS  Google Scholar 

  • Ferraris RP (2001) Dietary and developmental regulation of intestinal sugar transport. Biochem J 360:265–276

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol Regul Integr Comp Physiol 271:R1149–R1155

    CAS  Google Scholar 

  • Flynn NE, Wu G (1997a) Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs. J Nutr 127:732–737

    PubMed  CAS  Google Scholar 

  • Flynn NE, Wu G (1997b) Enhanced metabolism of arginine and glutamine in enterocytes of cortisol-treated pigs. Am J Physiol Gastrointest Liver Physiol 272:G474–G480

    CAS  Google Scholar 

  • Flynn NE, Meininger CJ, Kelly K et al (1999) Glucocorticoids mediate the enhanced expression of intestinal type II arginase and argininosuccinate lyase in postweaning pigs. J Nutr 129:799–803

    PubMed  CAS  Google Scholar 

  • Gartner H, Graul MC, Oesterreicher TJ et al (2003) Development of the fetal intestine in mice lacking the glucocorticoid receptor (GR). J Cell Physiol 194:80–87

    Article  PubMed  CAS  Google Scholar 

  • Grèco S, Niepceron E, Hugueny I et al (2001) Dietary spermidine and spermine participate in the maturation of galactosyltransferase activity and glycoprotein galactosylation in rat small intestine. J Nutr 131:1890–1897

    PubMed  Google Scholar 

  • Greene HL, Stifel FB, Hagler L, Herman RH (1975) Comparison of the adaptive changes in disaccharidase, glycolytic enzyme and fructose diphosphatase activities after intravenous and oral glucose in normal men. Am J Clin Nutr 28:1122–1125

    PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W et al (2008) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids. doi:10.1007/s00726-008-0184-9

  • He QH, Kong XF, Wu G et al (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi:10.1007/s00726-008-0192-9

  • Henning SJ (1978) Plasma concentrations of total and free corticosterone during development in the rat. Am J Physiol Gastrointest Liver Physiol 235:G451–G456

    Google Scholar 

  • Henning SJ (1981) Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol 241:G199–G214

    PubMed  CAS  Google Scholar 

  • Henning SJ, Oesterreicher TJ, Osterholm DE et al (1999) Meprin mRNA in rat intestine during normal and glucocorticoid-induced maturation: divergent patterns of expression of alpha and beta subunits. FEBS Lett 462:368–372

    Article  PubMed  CAS  Google Scholar 

  • Hirst M, Feldman D (1982) Glucocorticoid regulation of 1, 25(OH)2vitamin D3 receptors: divergent effects on mouse and rat intestine. Endocrinology 111:1400–1402

    PubMed  CAS  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S et al (2008a) Human Δ1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Williams DB, Zhaorigetu S et al (2008b) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Nakamoto H, Fucshima R et al (2002) Glucocorticoid protects against the development of encapsulating peritoneal sclerosis on peritoneal dialysis. Adv Perit Dial Conf 18:124–130

    CAS  Google Scholar 

  • James PS, Smith MW, Tivey DR, Wilson TJ (1987) Epidermal growth factor selectively increases maltase and sucrase activities in neonatal piglet intestine. J Physiol 393:583–594

    PubMed  CAS  Google Scholar 

  • Johnson LR (1988) Regulation of gastrointestinal mucosal growth. Physiol Rev 68:456–502

    PubMed  CAS  Google Scholar 

  • Kahana C (2007) Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 33:225–230

    Article  PubMed  CAS  Google Scholar 

  • Kiela PR, Guner YS, Xu H et al (2000) Age- and tissue-specific induction of NHE3 by glucocorticoids in the rat small intestine. Am J Physiol Cell Physiol 278:C629–C637

    PubMed  CAS  Google Scholar 

  • Koldovsky O, Chytil F, Muzcenkova H (1964) Effect of adrenalectomy and diet on the activity of beta-galactosidase in the small intestine during the postnatal development of the rat. Experientia 20:87–89

    Article  PubMed  CAS  Google Scholar 

  • Koldovsky O, Jumawan J, Palmieri M (1975) Effect of thyroidectomy on the activity of alpha-glucosidases and acid hydrolases in the small intestine of rats during weaning. J Endocrinol 66:31–36

    Article  PubMed  CAS  Google Scholar 

  • Kornbluth A, Sachar DB (1997) Ulcerative colitis practice guidelines in adults. American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 92:204–211

    PubMed  CAS  Google Scholar 

  • Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Mai KS, Trushenski J, Wu G (2008a) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids. doi:10.1007/s00726-008-0171-1

  • Li P, Kim SW, Li XL et al (2008b) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids. doi:10.1007/s00726-008-0196-5

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Correia L, Tolia K et al (1998) Early weaning induces jejunal ornithine decarboxylase and cell proliferation in neonatal rats. J Nutr 128:1636–1642

    PubMed  CAS  Google Scholar 

  • Nanthakumar NN, Henning SJ (1995) Distinguishing normal and glucocorticoid-induced maturation of intestine using bromodeoxyuridine. Am J Physiol Gastrointest Liver Physiol 268:G139–G145

    CAS  Google Scholar 

  • Nanthakumar NN, Young C, Ko JS et al (2005) Glucocorticoid responsiveness in developing human intestine: possible role in prevention of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 288:G85–G92

    Article  PubMed  CAS  Google Scholar 

  • Orii F, Ashida T, Nomura M et al (2002) Quantitative analysis for human glucocorticoid receptor alpha/beta mRNA in IBD. Biochem Biophys Res Commun 296:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Ou DY, Li DF, Cao YH et al (2007) Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem 18:820–826

    Article  PubMed  CAS  Google Scholar 

  • Patole S (2007) Prevention and treatment of necrotising enterocolitis in preterm neonates. Early Hum Dev 83:635–642

    Article  PubMed  CAS  Google Scholar 

  • Phang JM, Donald SP, Pandhare J, Liu YM (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Ratineau C, Roche C, Chuzel F et al (1996) Regulation of intestinal cholecystokinin gene expression by glucocorticoids. J Endocrinol 151:137–145

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Niu XM, Surendran S et al (2008) Arginine stimulates intestinal epithelial cell migration via a mechanism requiring both nitric oxide and p70s6k signaling. J Nutr 138:1652–1657

    PubMed  CAS  Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA et al (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  PubMed  CAS  Google Scholar 

  • Sangild PT (1995) Stimulation of gastric proteases in the neonatal pig by a rise in adrenocortical secretion at parturition. Reprod Fertil Dev 7:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Sangild PT, Elnif J (1996) Intestinal hydrolytic activity in young mink (Mustela vison) develops slowly postnatally and exhibits late sensitivity to glucocorticoids. J Nutr 126:2061–2068

    PubMed  CAS  Google Scholar 

  • Silver M, Fowden AL (1989) Pituitary-adrenocortical activity in the fetal pig in the last third of gestation. Q J Exp Physiol 74:197–206

    PubMed  CAS  Google Scholar 

  • Solomon NS, Gartner H, Oesterreicher TJ, Henning SJ (2001) Development of glucocorticoid-responsiveness in mouse intestine. Pediatr Res 49:782–788

    Article  PubMed  CAS  Google Scholar 

  • Souba WW, Smith RJ, Wilmore DW (1985) Effects of glucocorticoids on glutamine metabolism in visceral organs. Metabolism 34:450–456

    Article  PubMed  CAS  Google Scholar 

  • Sugita Y, Takao K, Toyama Y, Shirahata A (2007) Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids 33:253–260

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2008) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids. doi:10.1007/s00726-008-0149-z

  • Takabe S, Mochizuki K, Goda T (2008) De-phosphorylation of GR at Ser203 in nuclei associates with GR nuclear translocation and GLUT5 gene expression in Caco-2 cells. Arch Biochem Biophys 475:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Li X, Kong X et al (2008a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids. doi:10.1007/s00726-008-0155-1

  • Tan BE, Yin YL, Liu ZQ et al (2008b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0

  • Tredger JM, Chhabra RS (1980) Factors affecting the properties of mixed-function oxidases in the liver and small intestine of neonatal rabbits. Drug Metabol Dispos 8:16–22

    CAS  Google Scholar 

  • Wang JY (2007) Polyamines and mRNA stability in regulation of intestinal mucosal growth. Amino Acids 33:241–252

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Johnson LR (1990) Gastric and duodenal mucosal ornithine decarboxylase and damage after corticosterone. Am J Physiol 258:G942–G950

    PubMed  CAS  Google Scholar 

  • Wang W, Qiao S, Li D (2008a) Amino acids and gut function. Amino Acids. doi:10.1007/s00726-008-0152-4

  • Wang JJ, Wu G, Zhou HJ, Wang FL (2008b) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids. doi:10.1007/s00726-008-0193-8

  • Wang JJ, Chen LX, Li P et al (2008c) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319:657–667

    PubMed  CAS  Google Scholar 

  • Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    PubMed  CAS  Google Scholar 

  • Wu G (1996) An important role for pentose cycle in the synthesis of citrulline and proline from glutamine in porcine enterocytes. Arch Biochem Biophys 336:224–230

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629

    CAS  Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994a) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994b) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Davis PK, Flynn NE et al (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000a) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA, Jaeger LA (2000b) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regul Integr Comp Physiol 279:R554–R559

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ, Kelly K et al (2000c) A cortisol surge mediates the enhanced expression of pig intestinal pyrroline-5-carboxylate synthase during weaning. J Nutr 130:1914–1919

    PubMed  CAS  Google Scholar 

  • Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004) Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008b) Intrauterine growth retardation in livestock: implications, mechanisms and solutions. Arch Anim Breed 51(special issue 1):4–10

    Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2008c) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi:10.1007/s00726-008-0210-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick E. Flynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, N.E., Bird, J.G. & Guthrie, A.S. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37, 123–129 (2009). https://doi.org/10.1007/s00726-008-0206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0206-7

Keywords

Navigation