Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Hydrological impacts of climate change on a data-scarce Greek catchment

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper demonstrates a climate change impact study on the hydrological process of a data-scarce Greek watershed. The Soil and Water Assessment Tool (SWAT) and, particularly, the ArcSWAT interface was used for the watershed simulation. The ERA-Interim reanalysis climate data regarding the period from 1981 to 2000 were used for the historical simulation of the watershed. The ArcSWAT simulated data were evaluated against the observed discharge data for the periods with the available data. The statistical evaluation confirmed the ArcSWAT model’s capability in simulating the hydrological process of the research area. The climate change consequences on the hydrological components of the research area until the end of the twenty-first century were estimated by driving the ArcSWAT model with the Regional Climate Model Version 4 (RegCM4) forcing data under the extreme RCP 8.5 scenario, namely the simulations of the MPI and HadGEM2 general circulation models (GCMs), resulted from the spatio-temporal kriging approach. Based on the results, the increase in the minimum and the maximum temperature contributed to an increase in the actual evapotranspiration and the surface runoff. In contrast, the temperature increase caused a reduction in the infiltration. An increase (reduction) in the precipitation led to an increase (reduction) in the hydrological components. The climate change impact analysis of the Greek watershed showed that not only the precipitation changes but the temperature changes as well directly influence the water balance components of the research area and particularly the infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbaspour KC, Vaghefi SA, Srinivasan RA (2017) Guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 International SWAT Conference. Water 2018:10(6). https://doi.org/10.3390/w10010006

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization, Rome

  • Arnold JG, Srinivasan R, Muttiath RS, Williams JR (1998) Large area hydrologic modelling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman P, Abbaspour KC, White MJ, Srinivasan R, Harnal RD, van Griensven A, van Liew MW, Kanman N, Jha MK (2012) SWAT: model use, calibration and validation. ASABE 55(4):1491–1508

    Article  Google Scholar 

  • Baltas E, Karaliolidou MC (2002) Hydrological effects of land use and climate changes in northern Greece. J Land Use Sci 2(4):225–241. https://doi.org/10.1080/17474230701622908

    Article  Google Scholar 

  • Bilas G, Dionysiou N, Karapetsas N; Silleos K, Misopolinos N (2016) Development of a national geodatabase (Greece) for soil surveys and land evaluation using space technology and GIS. European Geosciences Union General Assembly 17–22 April 2016 Vienna, Austria

  • Brouziyne Y, Abouabdillah A, Bouabid R, Benaabidate L, Oueslati O (2017) SWAT manual calibration and parameters sensitivity analysis in a semi-arid watershed in North-Western Morocco. Arab J Geosci 10(427):1–13. https://doi.org/10.1007/s12517-017-3220-9

    Article  Google Scholar 

  • Candela L, Tamoh K, Olivares O, Gomez M (2012) Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Sci Total Environ 440:253–260. https://doi.org/10.1016/j.scitotenv.2012.06.062

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an earth-system model HadGEM2. Geosci Model Dev Discuss 4:997–1062. https://doi.org/10.5194/gmdd-4-9972011

    Article  Google Scholar 

  • Dlamini NS, Kamal MR, Soom MA, bin Mohd SF, AFB A, Hin LS (2017) Modeling potential impacts of climate change on streamflow using projections of the 5th assessment report for the Bernam River basin, Malaysia. Water 9(226). https://doi.org/10.3390/w9030226

  • Emam AR, Kappas M, Linh NHK, Renchin T (2017) Hydrological modeling and runoff mitigation in an ungauged basin of Central Vietnam using SWAT model. Hydrology 4(16). https://doi.org/10.3390/hydrology4010016hydrology

  • Essou GRC, Sabarly F, Lucas-Picher P, Brissette F, Poulin A (2016) Can precipitation and temperature from meteorological reanalyses be used for hydrological modelling? J Hydrometeorol 17:1929–1950

    Article  Google Scholar 

  • Ficklin DL, Luo Y, Luedeling E, Zhang M (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J Hydrol 374:16–29. https://doi.org/10.1016/j.hydrol.2009.05.016

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The Soil and Water Assessment Tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250. https://doi.org/10.13031/2013.23637

    Article  Google Scholar 

  • Gassman PW, Balmer C, Srinivasan R (2014a) The SWAT literature database: overview of database structure and key SWAT literature trends. In: Proceedings of the 2014 SWAT conference, 28 July–1 August 2014, Pernambuco. Texas Water Resource Institute Technical Report no. TR-472. Available from: http://swat.tamu.edu/ conferences/2014/. Accessed 10 March 2015

  • Gassman PW, Sadeghi AM, Srinivasan R (2014b) Applications of the SWAT model, special section: overview and insights. J Environ Qual 43:1–8. https://doi.org/10.2134/jeq2013.11.0466

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • IPCC Climate Change 2013. Synthesis Report. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/. Accessed on 10 October 2018

  • Jones CD, Hughes JK, Belloin N, Hardiman C, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Chini LP, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kalogeropoulos K, Chalkias C (2013) Modelling the impacts of climate change on surface runoff in small Mediterranean catchments: empirical evidence from Greece. Water Environ J 27:505–513. https://doi.org/10.1111/j.1747-6593.2012.00369.x

    Article  Google Scholar 

  • Köppen W (1954) Classification of climates and world patterns. In: Trewartha GT (ed) An Introduction to Climate. McGraw-Hill, New York, pp 225–226

    Google Scholar 

  • Krishnan N, Raj C, Chaubey I, Sudheer KP (2018) Parameter estimation of SWAT and quantification of consequent confidence bands of model simulations. Environ Earth Sci 77(470):1–16. https://doi.org/10.1007/s12665-018-7619-8

    Article  Google Scholar 

  • Krysanova V, Srinivasan R (2015) Assessment of climate and land use change impacts with SWAT. Reg Environ Chang 15(431–434):431–434. https://doi.org/10.1007/s10113-014-0742-5

    Article  Google Scholar 

  • Lazoglou G, Anagnostopoulou C, Koundouras S (2018) Climate change projections for Greek viticulture as simulated by a regional climate model. Theor Appl Climatol 133(1–2):551–567. https://doi.org/10.1007/s00704-017-2198-2

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Liew MW, Binger RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Neitsch SL, Arnold JD, Kiniry JR, Williams JR, King KW (2005) Soil and water assessment tool theoretical documentation. Version 2005. Texas Water Resource Institute, College station

    Google Scholar 

  • Nkiaka E, Nawaz NR, Lovett JC (2017) Evaluating global reanalysis datasets as input for hydrological modelling in the Sudano-Sahel region. Hydrology 4(13). https://doi.org/10.3390/hydrology4010013

  • Odusanya AE, Mehdi B, Schürz C, Oke AO, Awokola OS, Awomeso JA, Adejuwon JO, Schulz K (2019) Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol Earth Syst Sci 23:1113–1144. https://doi.org/10.5194/hess-23-1113-2019

    Article  Google Scholar 

  • Panagopoulos Y, Makropoulos C, Baltas E, Mimikou M (2011) SWAT parameterization for the identification of critical diffuse pollution source area under data limitations. Ecol Model 222:3500–3512. https://doi.org/10.1016/j.ecolmodel.2011.08.008

    Article  Google Scholar 

  • Penman HL (1956) Evaporation: an introductory survey. Neth J Agric Sci 1956(4):7–29

    Google Scholar 

  • Popke D, Stevens B, Voigt A (2013) Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J Adv in Model Earth Syst 5:1–14. https://doi.org/10.1029/2012MS000191

    Article  Google Scholar 

  • Romanou A, Tselioudis G, Zerefos CS, Clayson A, Curry JA, Andersson A (2010) Evaporation–precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23(19):5268–5287. https://doi.org/10.1175/2010JCLI3525.1

    Article  Google Scholar 

  • Schumm SA (1981) Evolution and response of the fluvial system, sedimentological implications. In: Ethridge FG, Flores RM (eds) Recent and 760 Geomorphic Classification of Rivers Nonmarine Depositional Environments. SEPM (Society for Sedimentary Geology), Special Publication 31, Tulsa, pp 19–29

    Chapter  Google Scholar 

  • Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Moreira M, Corte-Real J, Keizer JJ, Abrantes N (2015) Impacts of climate and land use changes on the hydrological and erosion process of two contrasting Mediterranean catchments. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.08.033

  • Soil Conservation Service (1972) Section 4: hydrology in National Engineering Handbook, SCS, 1972

  • Srinivasan R, Zhang X, Arnold J (2010) SWAT ungauged hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Trans ASABE Am Soc Agric Biol Eng 5(53):1533–1546

    Google Scholar 

  • Stehr Α, Debels P, Romero F, Alcayaga H (2008) Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrol Sci 53(3):588–601. https://doi.org/10.1623/hysj.53.3.588

    Article  Google Scholar 

  • Taylor ΚΕ (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Publications in Climatology 88:1-104, Laboratory of Climatology, Climatologic Dresel Institute of Technology

  • Tuppad P, Douglas-Mankin KR, Srinivasan R, Arnold JG (2011) Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: extended capability and wider adoption. Trans ASABE 54:1677–1684

    Article  Google Scholar 

  • Van Vuuren DP, Emonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Venetsanou P, Papadopoulos E, Mattas C (2017) Preliminary results from the hydrogeological investigation of the coastal aquifer of the Havrias basin (Halkidiki, Northern Greece). The application of the Swot analysis. 11th International Hydrogeological Congress of Greece, Athens

  • Venetsanou P, Anagnostopoulou C, Loukas A, Voudouris K (2018) Analysis of climate future projections using spatio-temporal Kriging method, 2019, 14th International Conference on Meteorology, Climatology and Atmospheric Physics, October 15-17 2018 Alexandroupolis Greece

  • Venetsanou P, Anagnostopoulou C, Loukas A, Lazoglou G, Voudouris K (2019) Minimizing the uncertainties of RCMs climate data by using spatio-temporal geostatistical modeling. Earth Sci Inf 12:183–196. https://doi.org/10.1007/s12145-018-0361-7

    Article  Google Scholar 

  • Voudouris K (2013) Evapotranspiration, In Engineering Geology, Tziolas, Thessaloniki, pp 94–95

Download references

Funding

This research has been financially supported by General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code 174, 95543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anagnostopoulou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venetsanou, P., Anagnostopoulou, C., Loukas, A. et al. Hydrological impacts of climate change on a data-scarce Greek catchment. Theor Appl Climatol 140, 1017–1030 (2020). https://doi.org/10.1007/s00704-020-03130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03130-6

Navigation