Abstract
The ambient air temperature (Ta) is an important environmental parameter which can be estimated from satellite observations of the land surface temperature (LST) using a linear regression model. This paper attempts to answer the question of whether the series of a single pixel or a spatially averaged series over several pixels should be used for modelling Ta from remotely sensed LST data. Sensitivity of LST-Ta relationship to the moderate resolution imaging spectroradiometer (MODIS) window size, which determines the number of pixels contributed in the correlations, over a number of test sites in New Zealand was analysed. LST series of a single pixel over a period of 10 years gave a correlation coefficient \(r\geqslant \) 0.80 with Ta measurements. Bootstrapping by random resampling from seasonal subsets of both time-series was applied to determine seasonal and inter-annual variability of LST-Ta relationship. A fast Fourier filtering was applied for noise reduction and detection of dominant spectra in LST series. Spatially averaged time-series from larger windows, which included more pixels, showed slightly higher agreement with Ta measurements. We considered the effects of wind speed (WS) and wind direction (WD) on the LST-Ta relationship. Highest correlation between Ta and LST time-series was achieved using a 25 × 25 window at 2 ≤ WS < 8 ms−1. No significant effect due to WD was found in the results. MODIS-Terra nighttime (∼10:30 PM) observations showed the highestwhile MODIS-Aqua nighttime (∼1:30 AM) observations showed the lowest agreement with Ta measurements. These results indicate that the best approach for modelling Ta based on LST observations from MODIS in the long-term is to use a spatially averaged LST series over a window of 5 × 5 to 25 × 25 pixels, with a consideration of WS effects and observation times.
Similar content being viewed by others
Notes
A detailed discussion about the importance of areally integrated remotely sensed data over point measurements is outlined in Owe et al. (1988).
References
Aikawa M, Hiraki T, Eiho J, Miyazaki H (2008) Role of the wind in the control of the air temperature distribution. Meteorog Atmos Phys 102:15–22. doi:10.1007/s00703-008-0001-8
Benali A, Carvalho A, Nunes J, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121. doi:10.1016/j.rse.2012.04.024. http://www.sciencedirect.com/science/article/pii/S0034425712002003
Brunel J (1989) Estimation of sensible heat flux from measurements of surface radiative temperature and air temperature at two meters: application to determine actual evaporation rate. Agric Forest Meteorol 46(3):179–191. doi:10.1016/0168-1923(89)90063-4. http://www.sciencedirect.com/science/article/pii/0168192389900634
Colombi A, Michele CD, Pepe M, Rampini A (2007) Estimation of daily mean air temperature from MODIS LST in alpine areas. EARSeL eProceedings 6(1):38–46. http://www.eproceedings.org/static/vol06_1/06_1_colombi1.pdf?SessionID=3a07ce7d4ead4eeaea8ad
Cresswell MP, Morse AP, Thomson MC, Connor SJ (1999) Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int J Remote Sens 20(6):1125–1132. doi:10.1080/014311699212885, http://www.tandfonline.com/doi/abs/10.1080/014311699212885, http://www.tandfonline.com/doi/pdf/10.1080/014311699212885
Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37(1):36–48. http://www.jstor.org/stable/2685844
Evrendilek F, Karakaya N, Gungor K, Aslan G (2012) Satellite-based and mesoscale regression modeling of monthly air and soil temperatures over complex terrain in Turkey. Expert Syst Appl 39(2):2059–2066. doi:10.1016/j.eswa.2011.08.023, http://www.sciencedirect.com/science/article/pii/S0957417411011341
Florio EN, Lele SR, Chi Chang Y, Sterner R, Glass GE (2004) Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: a statistical approach. Int J Remote Sens 25(15):2979–2994. doi:10.1080/01431160310001624593, http://www.tandfonline.com/doi/abs/10.1080/01431160310001624593, http://www.tandfonline.com/doi/pdf/10.1080/01431160310001624593
Hachem S, Duguay CR, Allard M (2012) Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 6(1):51–69. doi:10.5194/tc-6-51-2012, http://www.the-cryosphere.net/6/51/2012/
Haukoos JS, Lewis RJ (2005) Advanced statistics: bootstrapping confidence intervals for statistics with “difficult” distributions. Acad Emerg Med 12(4):360–365. doi:10.1197/j.aem.2004.11.018
Hengl T, Heuvelink G, Perčec Tadić M, Pebesma E (2012) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor Appl Climatol 107(1–2):265–277. doi:10.1007/s00704-011-0464-2
Hughes M, Hall A, Fovell R (2007) Dynamical controls on the diurnal cycle of temperature in complex topography. Clim Dyn 29:277–292. doi:10.1007/s00382-007-0239-8
Jiménez-Hornero F, Pavón-Domínguez P, de Ravé EG, Ariza-Villaverde A (2011) Joint multifractal description of the relationship between wind patterns and land surface air temperature. Atmos Res 99(3–4):366–376. doi:10.1016/j.atmosres.2010.11.009, http://www.sciencedirect.com/science/article/pii/S0169809510003121
Jin M (2004) Analysis of land skin temperature using AVHRR observations. Bull Am Meteorol Soc: BAMS 85:587–600. doi:10.1175/BAMS-85-4-587
Jin M, Dickinson RE (2010) Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environ Res Lett 5(4):044004. doi:10.1088/1748-9326/5/4/044004, http://stacks.iop.org/1748-9326/5/i=4/a=044004
Jönsson P, Holmquist B (1995) Wind direction in Southern Sweden 1740–1992: variation and correlation with temperature and zonality. Theor Appl Climatol 51:183–198. doi:10.1007/BF00867279
Kawashima S, Ishida T (1992) Effects of regional temperature, wind speed and soil wetness on spatial structure of surface air temperature. Theor Appl Climatol 46:153–161. doi:10.1007/BF00866095
Kerchove RVD, Lhermitte S, Veraverbeke S, Goossens R (2013) Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains. Int J Appl Earth Obs Geoinfo 20:4–19. doi:10.1016/j.jag.2011.09.007, http://www.sciencedirect.com/science/article/pii/S0303243411001280
Lin S, Moore NJ, Messina JP, DeVisser MH, Wu J (2012) Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int J Appl Earth Obs Geoinfo 18(0):128–140. doi:10.1016/j.jag.2012.01.004, http://www.sciencedirect.com/science/article/pii/S0303243412000050
Mildrexler DJ, Zhao M, Running SW (2011) A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J Geophys Res: Biogeosci 116(G3):G03025. doi:10.1029/2010JG001486
Mostovoy GV, King RL, Reddy KR, Kakani VG, Filippova MG (2006) Statistical estimation of daily maximum and minimum air temperatures from MODIS LST Data over the State of Mississippi. GISci Remote Sens 43(1):78–110. doi:10.2747/1548-1603.43.1.78, http://bellwether.metapress.com/content/5239jh57kr22771t/
Norman JM, Becker F (1995) Terminology in thermal infrared remote sensing of natural surfaces. Agric Forest Meteorol 77(3–4):153–166. doi:10.1016/0168-1923(95)02259-Z, http://www.sciencedirect.com/science/article/pii/016819239502259Z
Owe M, Chang A, Golus RE (1988) Estimating surface soil moisture from satellite microwave measurements and a satellite derived vegetation index. Remote Sens Environ 24(2):331–345. doi:10.1016/0034-4257(88)90033-8, http://www.sciencedirect.com/science/article/pii/0034425788900338
Pei SC, Luo TL (1996) Split-radix generalized fast Fourier transform. Signal Proc 54(2):137–151. doi:10.1016/S0165-1684(96)00103-X, http://www.sciencedirect.com/science/article/pii/S016516849600103X
Pleim JE (2006) A simple, efficient solution of flux-profile relationships in the atmospheric surface layer. J Appl Meteorol Climatol 45(2):341–347. doi:10.1175/JAM2339.1
Prihodko L, Goward SN (1997) Estimation of air temperature from remotely sensed surface observations. Remote Sens Environ 60(3):335–346. doi:10.1016/S0034-4257(96)00216-7, http://www.sciencedirect.com/science/article/pii/S0034425796002167
Sohrabinia M, Rack W, Zawar-Reza P (2012) Analysis of MODIS LST compared with WRF model and in-situ data over the Waimakariri River Basin, Canterbury, New Zealand. Remote Sens 4(11):3501–3527. doi:10.3390/rs4113501, http://www.mdpi.com/2072-4292/4/11/3501
Sun YJ, Wang JF, Zhang RH, Gillies RR, Xue Y, Bo YC (2005) Air temperature retrieval from remote sensing data based on thermodynamics. Theor Appl Climatol 80(1):37–48. doi:10.1007/s00704-004-0079-y
Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114(2):449–465. doi:10.1016/j.rse.2009.10.002, http://www.sciencedirect.com/science/article/pii/S0034425709003113
Vinnikov KY, Yu Y, Goldberg MD, Tarpley D, Romanov P, Laszlo I, Chen M (2012) Angular anisotropy of satellite observations of land surface temperature. Geophys Res Lett 39(23):L23802. doi:10.1029/2012GL054059
Wan Z (1999) MODIS land-surface temperature algorithm theoretical basis document (LST ATBD). Institute for Computational Earth System Science University of California, Santa Barbara, 93106–3060. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
Wan Z (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112:59–74. doi:10.1016/j.rse.2006.06.026
Wan Z (2009) Collection-5 MODIS Land Surface Temperature Products Users’ Guide:93106–3060. http://www.icess.ucsb.edu/modis/LstUsrGuide/usrguide_index.html, http://datamirror.csdb.cn/modis/resource/doc/MOD11_UserGuide.pdf
Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space, vol 34. doi:10.1109/36.508406
Wan Z, Li Z (2008) Radiance-based validation of the V5 MODIS land-surface temperature product. Int J Remote Sens 29:5373–5395. doi:10.1080/01431160802036565
Wan Z, Zhang Y, Li Z, Wang R, Salomonson V, Yves A, Bosseno R, Hanocq J (2002a) Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca. Remote Sens Environ 80:497–515. doi:10.1016/S0034-4257(01)00327-3
Wan Z, Zhang Y, Zhang Q, Li Z (2002b) Validation of the land-surface temperature products retrieved from terra moderate resolution imaging spectroradiometer data. Remote Sens Environ 83:163–180. doi:10.1016/S0034-4257(02)00093-7
Wan Z, Zhang Y, Zhang Q, Li Z (2004) Quality assessment and validation of the MODIS global land surface temperature. Int J Remote Sens 25:261–274. doi:10.1080/0143116031000116417
Xu Y, Qin Z, Shen Y (2012) Study on the estimation of near-surface air temperature from MODIS data by statistical methods. Int J Remote Sens 33(24):7629–7643. doi:10.1080/431161.2012.701351, http://www.tandfonline.com/doi/abs/10.1080/431161.2012.701351, http://www.tandfonline.com/doi/pdf/10.1080/431161.2012.701351
Yoo JM, Won YI, Cho YJ, Jeong MJ, Shin DB, Lee SJ, Lee YR, Oh SM, Ban SJ (2011) Temperature trends in the skin/surface, mid-troposphere and low stratosphere near Korea from satellite and ground measurements. Asia-Pac J Atmos Sci 47:439–455. doi:10.1007/s13143-011-0029-4
Zhang W, Huang Y, Yu Y, Sun W (2011) Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int J Remote Sens 32(1):1–26. doi:10.1080/431161.2011.560622
Zhu W, Lu AL, Jia S (2013) Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens Environ 130(0):62–73. doi:10.1016/j.rse.2012.10.034, http://www.sciencedirect.com/science/article/pii/S0034425712004221
Acknowledgments
We acknowledge access to New Zealand’s National Climate Database (Cliflo), provided by the National Institute of Water & Atmospheric Research (NIWA), via an online web-based system which we used to download Ta and other climate parameters. Access to the MODIS LST product via Reverb tool and the MODIS near real-time data from the US National Aeronautics and Space Administration (NASA) is appreciated. Language editions and proof reading of the paper was done by Caroline Cameron-Blackgrove. We also express cordial thanks to the anonymous reviewers and the managing editor of the journal of Theorectical and Applied Climatology, Prof. Dr. Hartmut Grassl, for their invaluable comments which greatly improved the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sohrabinia, M., Zawar-Reza, P. & Rack, W. Spatio-temporal analysis of the relationship between LST from MODIS and air temperature in New Zealand. Theor Appl Climatol 119, 567–583 (2015). https://doi.org/10.1007/s00704-014-1106-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-014-1106-2