Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bioinspired computing nets for directionality in vision

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Directional selectivity to local visual stimuli appears in various levels of the visual pathway, being in the retina very conspicuous. Neurophysiology suggests that directionality (as well as other local and quasi-global filtering properties) are based in the space–time interactions of processes with different “memory” (latency). We draw inspiration from the corresponding underlying biological mechanisms to propose two general schemes for directionality computation in nets, compatible with other space–time filtering properties. First, a connectivistic mechanism based on bipolar–amacrine–ganglion cell interaction is proposed, by formalizing the classical proposals of early vision neurophysiologists. Second, inspired initially in the more recently described intrinsic directionality of amacrines, novel schemes are proposed where directionality appear as the computing consequence of adding memory to spatial filtering structures. The mathematical formulations are achieved by means of Newton Filters and Hermite Functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178: 477–504

    Google Scholar 

  2. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471: 183–188

    Article  Google Scholar 

  3. Dong W, Sun W, Zhang Y, Chen X, He S (2004) Dendritic relationship between starbust amacrine cells and direction-selective ganglion cells in the rabbit retina. J Physiol 556(1): 11–17

    Article  Google Scholar 

  4. Fried SI, Münch TA (2002) Mechanisms and circuitry underlying directional selectivity. Nature 40: 411–413

    Article  Google Scholar 

  5. Fried SI, Masland RH (2007) Image processing: how the retina detects the direction of image motion. Curr Biol 17(2): R63–R66

    Article  Google Scholar 

  6. Hammond P (1973) Contrasts in spatial organization of receptive fields at geniculate and retinal levels: centre surround and outer surround. J Physiol 228: 115–137

    Google Scholar 

  7. Hughes CP, Pearlman AL (1974) Single unit receptive fields and the cellular layers of the pigeon optic tectum. Brain Res 80: 111–122

    Article  Google Scholar 

  8. Keeley PW, Whitney IE, Raven MA, Reese BE (2007) Dendritic spread and functional coverage of starbust amacrine cells. J Comp Neurol 505: 539–546

    Article  Google Scholar 

  9. Leresche N, Hardy O, Jassik-Gerschenfeld D (1983) Receptive field properties of single cells in the pigeon’s optic tectum during cooling of the “Visual Wulst”. Brain Res 267(2): 225–236

    Article  Google Scholar 

  10. Leresche N, Hardy O, Audinat E, Jassik-Gerschenfeld D (1986) Synaptic organization of inhibitory circuits in the pigeon’s optic tectum. Brain Res 365(2): 383–387

    Article  Google Scholar 

  11. Lettvin JY (1962) Form-function relations in neurons. Res Lab of Electron, MIT Quaterly Progress Report. June 1962, 333–335

  12. Li CY, Zhou YX, Pei X, Qiu FT, Tang CQ, Xu XZ (1992) Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells. Vis Res 32(2): 219–228

    Article  Google Scholar 

  13. Marr D Vision (1982) WH Freeman and Company, San Francisco

  14. Martiniuc AV, Knoll A (2011) Sharpening of directional selectivity from neural output of rabbit retina. J Comput Neurosci 30: 409–426

    Article  Google Scholar 

  15. McCulloch WS (1988) Embodiments of mind. MIT Press, Cambridge

    Google Scholar 

  16. Moreno-Díaz R, Rubio E (1980) A model for non-linear processing in cat’s retina. Biol Cyb 37: 25–31

    Article  MATH  Google Scholar 

  17. Moreno-Díaz R, Rubio E, Núñez A (1980) A layered model for visual processing in avian retina. Biol Cyb 38: 85–89

    Article  MATH  Google Scholar 

  18. Moreno-Díaz R, de Blasio G, Moreno-Díaz A (2008) A framework for modelling competitive and cooperative computation in retinal processing. In: Ricciardi LM, Buonocuore A, Pirozzi E (eds) Collective dynamics: topics on competition and cooperation in the biosciences, vol 1028. American Institute of Physics, New York, pp 88–97

    Google Scholar 

  19. Moreno-Diaz R, de Blasio G (2003) Systems methods in visual modelling. Sys Anal Model Simul 43: 1159–1171

    Google Scholar 

  20. Moreno-Diaz R, de Blasio G (2004) Systems and computational tools for neuronal retinal models. Lect Notes Comp Sci 2809: 494–505

    Article  Google Scholar 

  21. Moreno-Díaz jr R (1993) Computación Paralela y Distribuida: Relaciones Estructura-Función en Retinas. PhD Thesis, Universidad de Las Palmas de GC

  22. Moreno-Díaz R Jr, Quevedo-Losada JC, Quesada-Arencibia A (2000) Systems approach to attention mechanisms in the visual pathway. Lect Notes Comp Sci 1798: 497–505

    Article  Google Scholar 

  23. Pearlman AL, Hughes CP (1976) Functional role of efferents to the avian retina. I. Analysis of retinal ganglion cell receptive fields. J Comp Neur 166: 111–122

    Article  Google Scholar 

  24. Rodieck RW, Stone J (1965) Response of cat retinal ganglion cells to moving visual patterns. J Neurophysiol 28: 819–832

    Google Scholar 

  25. Sterling P (1999) The ganglion receptive field. In: Toyoda J et al (eds) The retinal basis of vision. Elsevier Science B.V., Amsterdam, pp 163–169

  26. Taylor WR, Vaney DI (2002) Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J Neurosci 22(17): 7712–7720

    Google Scholar 

  27. Taylor WR, He S, Levick WR, Vaney DI (2000) Dendritic computation of direction selectivity by retinal ganglion cells. Science 289: 2347–2350

    Article  Google Scholar 

  28. Tokutake Y, Freed MA (2008) Retinal ganglion cells-spatial organization of the receptive field reduces temporal redundancy. Eur J Neurosci 28: 914–923

    Article  Google Scholar 

  29. Troy J, Shou T (2002) The receptive fields of cat retinal ganglion cells in phisiological and pathological states: where we are after half a century of research. Prog Retin Eye Res 21: 263–302

    Article  Google Scholar 

  30. Tukker JJ, Taylor WR, Smith RG (2004) Direction selectivity in a model of the starbust amacrine cell. Vis Neurosci 21: 611–625

    Article  Google Scholar 

  31. Wei W, Hamby AM, Zhou K, Feller MB (2010) Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469: 402–406

    Article  Google Scholar 

  32. Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30: 771–780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel de Blasio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Blasio, G., Moreno-Díaz, A. & Moreno-Díaz, R. Bioinspired computing nets for directionality in vision. Computing 94, 449–462 (2012). https://doi.org/10.1007/s00607-012-0186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-012-0186-z

Keywords

Mathematics Subject Classification (2000)

Navigation