Abstract
This survey aims at giving both a dynamical and computer arithmetic-oriented presentation of several classical numeration systems, by focusing on the discrete dynamical systems that underly them: this provides simple algorithmic generation processes, information on the statistics of digits, on the mean behavior, and also on periodic expansions (whose study is motivated, among other things, by finite machine simulations). We consider numeration systems in a broad sense, that is, representation systems of numbers that also include continued fraction expansions. These numeration systems might be positional or not, provide unique expansions or be redundant. Special attention will be payed to β-numeration (one expands a positive real number with respect to the base β > 1), to continued fractions, and to their Lyapounov exponents. In particular, we will compare both representation systems with respect to the number of significant digits required to go from one type of expansion to the other one, through the discussion of extensions of Lochs’ theorem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akiyama S, Barat G, Berthé V, Siegel A (2008) Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh Math 155: 377–419
Arnold VI (1998) Higher-dimensional continued fractions. Regul Chaotic Dyn 3: 10–17
Avizienis A (1961) Signed-digit number representations for fast parallel arithmetic. IEEE Trans EC-10: 389–400
Bajard J-C, Muller J-M (eds) (2004) Calcul et arithmétique des ordinateurs, Traité IC2, série Informatique et Systèmes d’Information, Hermes Sciences
Baladi V, Vallée B (2005) Euclidean algorithms are Gaussian. J Number Theory 110: 331–386
Barat G, Liardet P (2004) Dynamical systems originated in the Ostrowski alpha-expansion. Ann Univ Sci Budapest Sect Comput 24: 133–184
Barat G, Berthé V, Liardet P, Thuswaldner JM (2006) Dynamical directions in numeration. Ann Inst Fourier (Grenoble) 56: 1987–2092
Barreira L, Godofredo I (2008) Partial quotients of continued fractions and β-expansions. Nonlinearity 21: 2211–2219
Berthé V (2001) Autour du système de numération d’Ostrowski. Bull Belg Math Soc Simon Stevin 8: 209–239
Berthé V (2011) Multidimensional Euclidean algorithms, numeration and substitutions. Integers (to appear)
Berthé V, Imbert L (2009) Diophantine approximation, Ostrowski numeration and the double-base number system. Discret Math Theor Comput Sci 11: 153–172
Berthé V, Nakada H (2000) On continued fraction expansions in positive characteristic: equivalence relations and some metric properties. Expo Math 18: 257–284
Berthé V, Rigo M (2005) Abstract numeration systems and tilings. In: Proceedings of the 30th international symposium: mathematical foundations of computer science (Gdańsk 2005). Lecture Notes in Computer Science 3618, pp 131–143
Bertrand A (1977) Développements en base de Pisot et répartition modulo 1. C R Acad Sci Paris Sér A-B 285(6): A419–A421
Billingsley P (1965) Ergodic theory and information. Wiley, New York
Blanchard F (2009) Topological chaos: what may this mean?. J Differ Equ Appl 15: 23–46
Boese G (1982) An a priori estimate for the truncation error of a continued fraction expansion to the Gaussian error function. Computing 29: 135–152
Bosma W (2001) Signed bits and fast exponentiation. J Théor Nombres Bordeaux 13: 27–41
Bosma W, Dajani K, Kraaikamp C (2006) Entropy quotients and correct digits in number-theoretic expansions, dynamics and stochastics. IMS Lect Notes Monogr Ser 48: 176–188
Brentjes AJ (1981) Multi-dimensional continued fraction algorithms. Mathematical Centre Tracts. Matematisch Centrum, Amsterdam
Broise A (1996) Fractions continues multidimensionnelles et lois stables. Bull Soc Math France 124: 97–139
Broise-Alamichel A, Guivarc’h Y (2001) Exposants caractéristiques de l’algorithme de Jacobi-Perron et de la transformation associée. Ann Inst Fourier (Grenoble) 51: 565–686
Cesaratto E, Clément J, Daireaux B, Lhote L, Maume-Deschamps V, Vallée B (2009) Regularity of the Euclid algorithm; application to the anaysis of fast GCD algorithms. J Symb Comput 44: 726–767
Choe GH (2005) Computational ergodic theory. Algorithms and Computation in Mathematics. Springer, Berlin
Corless RM (1992) Continued fractions and chaos. Am Math Mon 99: 203–215
Corless RM (1994) What good are numerical simulations of chaotic dynamical systems?. Comput Math Appl 28: 107–121
Corless RM, Frank GW, Monroe JG (1990) Chaos and continued fractions. Phys D 46: 241–253
Cuyt A, Verdonk B, Waadeland H (2006) Efficient and reliable multiprecision implementation of elementary and special functions. SIAM J Sci Comput 28: 1437–1462
Dajani K, Fieldsteel A (2001) Equipartition of interval partitions and an application to number theory. Proc Am Math Soc 129: 3453–3460
Dajani K, Kraaikamp C (2002) Ergodic theory of numbers. The Mathematical Association of America, Washington, DC
Devaney RL (1989) An introduction to chaotic dynamical systems. Addison–Wesley studies in nonlinearity, Redwood City
Faivre C (1997) On decimal and continued fraction expansions of a real number. Acta Arith 82: 119–128
Faivre C (1998) A central limit theorem related to decimal and continued fraction expansion. Arch Math (Basel) 70: 455–463
Faivre C (2001) On calculating a continued fraction expansion from a decimal expansion. Acta Sci Math (Szeged) 67: 505–519
Flajolet P, Odlyzko AM (1990) Random mapping statistics, EUROCRYPT’ 89. Lect Notes Comput Sci 434: 329–354
Flajolet P, Vallée B (2000) Continued fractions, comparison algorithms, and fine structure constants. In: CMS Conference Proceedings, vol 27. American Mathematical Society, Providence, pp 53–82
Flajolet P, Vallée B (1998) Continued fraction algorithms, functional operators, and structure constants. Theoret Comput Sci 194: 1–34
Frougny Ch (2002) Numeration systems. Encyclopedia of Mathematics and its Applications, vol 90, chap 7. Cambridge University Press, Cambridge, pp 230–268
Frougny Ch (2003) On-line digit set conversion in real base. Theoret Comput Sci 292: 221–235
Frougny Ch (2000) On-the-fly algorithms and sequential machines. IEEE Trans Comput 49: 859–863
Frougny Ch (1999) On-line finite automata for addition in some numeration systems. Theor Inf Appl 33: 79–101
Frougny Ch (1997) On the sequentiality of the successor function. Inf Comput 139: 17–38
Frougny Ch, Sakarovitch J (2010) Number representation and finite automata. Encyclopedia of Mathematics and its Applications, vol 135, chap 2. Cambridge University Press, Cambridge, pp 34–107
Galatolo S, Hoyrup M, Rojas C (2010) Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inf Comput 208: 23–41
Góra P, Boyarsky A (1988) Why computers like Lebesgue measure. Comput Math Appl 16: 321–329
Góra P, Paweł , Boyarsky A, Shafiqul IMd, Bahsoun W (2006) Absolutely continuous invariant measures that cannot be observed experimentally. SIAM J Appl Dyn Syst 5:84–90
Gosper W (1972) Continued fraction arithmetic, HAKMEM Item 101B. MIT Artificial Intelligence Memo 239. MIT
Grabner PJ, Heuberger C (2006) On the number of optimal base 2 representations of integers. Des Codes Cryptogr 40: 25–39
Grabner PJ, Liardet P, Tichy RF (1995) Odometers and systems of numeration. Acta Arith LXX.2: 103–123
Grabner PJ, Heuberger C, Prodinger H, Thuswaldner JM (2005) Analysis of linear combination algorithms in cryptography. ACM Trans Algorithms 1: 123–142
Hardy GH, Wright EM (1979) An introduction to the theory of numbers. Oxford Science Publications, Oxford
Heuberger C, Prodinger H. (2001) On minimal expansions in redundant number systems: Algorithms and quantitative analysis. Computing 66: 377–393
Ito S (1986) Some skew product transformations associated with continued fractions and their invariant measures. Tokyo J Math 9: 115–133
Ito S, Nakada H (1988) Approximations of real numbers by the sequence {nα} and their metrical theory. Acta Math Hung 52: 91–100
Jones WB, Thron WJ (1980) Continued fractions. Encyclopedia of Mathematics and its Applications, vol 11. Addison–Wesley Publishing Co, Reading
Kátai I, Szabó J (1975) Canonical Number Systems for Complex Integers. Acta Sci Math (Szeged) 37: 255–260
Khintchine AY (1963) Continued fractions (translated by P. Wynn). P. Noordhoff Ltd, Groningen
Kitchens BP (1998) Symbolic dynamics, One-sided, two-sided and countable state Markov shifts (Universitext). Springer, Berlin
Knuth DE (1998) The art of computer programming. Seminumerical algorithms. Addison–Wesley, Reading
Kornerup P, Matula D (1995) LCF: a lexicographic binary representation of the rationals. J Univ Comput Sci 1: 484–503
Lagarias JC (1982) Best simultaneous diophantine approximations. I. Growth rates of best approximation denominators. Trans Am Math Soc 272: 545–554
Lagarias JC (1982) Best simultaneous diophantine approximations. II. Behavior of consecutive best approximations. Pac J Math 102: 61–88
Lagarias JC (1985) The computational complexity of simultaneous Diophantine approximation problems. SIAM J Comput 14: 196–209
Lefèvre V (2005) New results on the distance between a segment and \({\mathbb{Z}^{2}}\) . Application to exact rounding. In: Proceedings of the 17th IEEE symposium on computer arithmetic, pp 68–75
Lefèvre V, Muller J-M, Tisserand A (1998) Towards correctly rounded transcendentals. IEEE Trans Comput 47: 1235–1243
Lester DR (2001) Effective continued fractions. In: Burgess N, Ciminiera L (eds) 15th IEEE Symposium on Computer Arithmetic: ARITH-15, pp 163–172
Li B, Wu J (2008) Beta-expansion and continued fraction expansion over formal Laurent series. Finite Fields Appl 14: 635–647
Li B, Wu J (2008) Beta-expansion and continued fraction expansion. J Math Anal Appl 339: 1322–1331
Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge
Lochs G (1964) Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch. Abh Math Sem Univ Hamburg 27: 142–144
Lochs G (1963) Die ersten 968 Kettenbruchnenner von π. Monatsh Math 67: 311–316
Lhote L, Vallée B (2008) Gaussian laws for the main parameters of the Euclid algorithms. Algorithmica 50: 497–554
Ménissier-Morain V (1994) Arithmétique exacte, conception, algorithmique et performances d’une implémentation informatique en précision arbitraire, Thèse, Université Paris 7
Muller J-M (1989) Arithmétique des Ordinateurs. Masson, Paris
Muller J-M (1997) Elementary functions, algorithms and implementation. Birkhäuser Boston Inc., Boston
Muller J-M (1994) Some characterizations of functions computable in on-line arithmetic. IEEE Trans Comput 43: 752–755
Muller J-M, Brisebarre N, de Dinechin F, Jeannerod C-P, Lefèvre V, Melquiond G, Revol N, Stehlé D, Torres S (2010) Handbook of floating-point arithmetic. Birkhäuser Boston Inc, Boston
Niederreiter H (1987) Continued fractions for formal power series, pseudorandom numbers, and linear complexity. Contributions to general algebra, 5 (Salzburg, 1986). Hölder-Pichler-Tempsky, Vienna, pp 221–233
Niederreiter H (1995) Low-discrepancy sequences and non-Archimedean Diophantine approximations. Stud Sci Math Hung 30: 111–122
Niederreiter H (1988) Sequences with almost perfect linear complexity profile. In: Chaum D, Price WL (eds) Advances in cryptology: Proc. EUROCRYPT’87”. Springer, Berlin, pp 37–51
Niqui M (2007) Exact arithmetic on the Stern-Brocot tree. J Discret algorithms 5: 356–379
Nguyen, PQ, Vallée, B (eds) (2010) The LLL algorithm, survey and applications. Information Security and Cryptography. Springer, Dordrecht
Parry W, Pollicott M (1990) Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, pp 187–188
Pilyugin SY (1999) Shadowing in dynamical systems. Lecture Notes in Mathematics 1706. Springer, Berlin
Pollicott M (1986) Distribution of closed geodesics on the modular surface and quadratic irrationals. Bull Soc Math France 114: 431–446
Raney GN (1973) On continued fractions and finite automata. Math Ann 206: 265–283
Rényi A (1957) Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hung 8: 477–493
Schmidt K (1980) On periodic expansions of Pisot numbers and Salem numbers. Bull Lond Math Soc 12: 269–278
Schweiger F (2000) Multi-dimensional continued fractions. Oxford Science Publications, Oxford Univ. Press, Oxford
Sidorov N et al (2003) Arithmetic dynamics. In: Bezuglyi S (eds) Topics in dynamics and ergodic theory. London Mathematical Society Lecture Note Series, vol 310. Cambridge University Press, Cambridge, pp 145–189
Skokos Ch (2010) The Lyapunov Characteristic Exponents and their Computation. Lect Notes Phys 790: 63–135
Tamura J-I, Yasutomi S-I (2009) A new multidimensional continued fraction algorithm. Math Comput 78: 2209–2222
Vallée B (2006) Euclidean dynamics. Discret Contin Dyn Syst 15: 281–352
Vuillemin J (1990) Exact real computer arithmetic with continued fractions. IEEE Trans Comput 39: 1087–1105
V’yugin VV (1998) Ergodic theorems for individual random sequences. Theor Comput Sci 207: 343–361
Wall HS (1948) Analytic theory of continued fractions. D. Van Nostrand Company, Inc., New York
Walters P (1982) An introduction to ergodic theory. Springer, New York
Wu J (2006) Continued fraction and decimal expansions of an irrational number. Adv Math 206: 684–694
Wu J (2008) An iterated logarithm law related to decimal and continued fraction expansions. Monatsh Math 153: 83–87
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berthé, V. Numeration and discrete dynamical systems. Computing 94, 369–387 (2012). https://doi.org/10.1007/s00607-011-0181-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-011-0181-9
Keywords
- Discrete dynamical system
- Numeration system
- Continued fractions
- Euclidean algorithm
- Lyapounov exponent
- Simulation