Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Massive mesh hole repair minimizing user intervention

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In constructing a model of a large twelfth century monument, we face the repair of a huge amount of small to medium-sized defects in the mesh. The total size of the mesh after registration was in the vicinity of 173M-triangles, and presented 14,622 holes of different sizes. Although other algorithms have been presented in the literature to fix these defects, in this case a fully automatic algorithm able to fix most of the defects is needed. In this paper we present the algorithms developed for this purpose, together with examples and results to measure the final surface quality. The algorithm is based on the iteration of smoothing and fitting steps on a uniform B-Spline defined on a 3D box domain bounding the hole. Tricubic and trilinear B-Splines are compared and the respective effectiveness is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Besora I, Brunet P, Callieri M, Chica A, Corsini M, Dellepiane M, Morales D, Moyés J, Ranzuglia G, Scopigno R (2008) Portalada: a virtual reconstruction of the entrance of the Ripoll monastery. In: 3DPVT08: fourth international symposium on 3D data processing, visualization and transmission, pp 89–96

  2. Besora I, Brunet P, Chica A, Moyés J (2008) Real-time exploration of the virtual reconstruction of the entrance of the Ripoll monastery. In: CEIG 2008 conference proceedings, pp 219–224

  3. Bischoff S, Kobbelt L (2005) Structure preserving cad model repair. Comput Graph Forum 24(3): 527–536

    Article  Google Scholar 

  4. Bischoff S, Pavic D, Kobbelt L (2005) Automatic restoration of polygon models. ACM Trans Graph 24(4): 1332–1352

    Article  Google Scholar 

  5. Boissonnat JD, Oudot S (2005) Provably good sampling and meshing of surfaces. Graph Models 67(5): 405–451

    Article  MATH  Google Scholar 

  6. Esteve J, Brunet P, Vinacua A (2008) Piecewise algebraic surface computation and smoothing from a discrete model. Comput Aided Geom Des 25(6): 357–372

    Article  MathSciNet  Google Scholar 

  7. Hornung A, Kobbelt L (2006) Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. In: CVPR ’06 Proceedings of the 2006 IEEE Computer Society Conference on computer vision and pattern recognition, pp 503–510

  8. Hornung A, Kobbelt L (2006) Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In: SGP ’06 Proceedings of the fourth Eurographics symposium on geometry processing, pp 41–50

  9. Ju T (2004) Robust repair of polygonal models. ACM Trans Graph 23(3): 888–895

    Article  Google Scholar 

  10. Liepa P (2003) Filling holes in meshes. In: SGP ’03 Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing, pp 200–205

  11. Murali T, Funkhouser T (1997) Consistent solid and boundary representations from arbitrary polygonal data. In: Proceedings of the 1997 symposium on interactive 3D graphics, pp 155–162

  12. Nooruddin FS, Turk G (2003) Simplification and repair of polygonal models using volumetric techniques. IEEE Trans Vis Comp Graph 9(2): 191–205

    Article  Google Scholar 

  13. Turk G, Levoy M (1994) Zippered polygon meshes from range images. In: SIGGRAPH ’94 Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp 311–318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Chica.

Additional information

Communicated by C. H. Cap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet, P., Chica, A., Navazo, I. et al. Massive mesh hole repair minimizing user intervention. Computing 86, 101–115 (2009). https://doi.org/10.1007/s00607-009-0052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0052-9

Keywords

Mathematics Subject Classification (2000)

Navigation