Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A Total BETI (TBETI) based domain decomposition algorithm with the preconditioning by a natural coarse grid of the rigid body motions is adapted for the solution of contact problems of linear elastostatics and proved to be scalable for the coercive problems, i.e., the cost of the solution is asymptotically proportional to the number of variables. The analysis is based on the original results by Langer and Steinbach on the scalability of BETI for linear problems and our development of optimal quadratic programming algorithms for bound and equality constrained problems. Both theoretical results and numerical experiments indicate a high efficiency of the algorithms presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Avery P, Rebel G, Lesoinne M, Farhat C (2004) A numerically scalable dual–primal substructuring method for the solution of contact problems – part I: the frictionless case. Comput Methods Appl Mech Eng 193: 2403–2426

    Article  MATH  Google Scholar 

  2. Axelsson O (1994) Iterative solution methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Bertsekas DP (1999) Nonlinear optimization. Athena Scientific, Belmont

    Google Scholar 

  4. Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouchala J, Dostál Z, Sadowská M (2005) Solution of boundary variational inequalities by combining fast quadratic programming algorithms with symmetric BEM. Advances in Boundary Integral Methods—Proceedings of the Fifth UK Conference on Boundary Integral Methods. University of Liverpool, pp 221–228

  6. Bouchala J, Dostál Z, Sadowská M (2007) Solving 2D Contact Problem by Boundary Element Tearing and Interconnecting Method. Advances in Boundary Integral Methods—Proceedings of the Sixth UK Conference on Boundary Integral Methods, Durham University, pp 63–70

  7. Bouchala J, Dostál Z, Sadowská M (2008) Theoretically supported scalable BETI method for variational inequalities. Computing 82: 53–75

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouchala J, Dostál Z, Sadowská M (2008) Scalable BETI for Variational Inequalities. Lecture Notes in Computational Science and Engineering—selection of 71 refereed papers presented at the 17th International Conference on Domain Decomposition Methods. Springer Heidelberg, pp 167–174

  9. Brzobohatý T, Dostál Z, Kozubek T, Markopoulos A (2009, submitted) Combining Cholesky decomposition with SVD to stable evaluation of a generalized inverse of the stiffness matrix of a floating structure

  10. Conn AR, Gould NIM, Toint PhL (1991) A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J Numer Anal 28: 545–572

    Article  MATH  MathSciNet  Google Scholar 

  11. Costabel M (1988) Boundary integral operators on Lipschitz domains: Elementary results. SIAM J Math Anal 19: 613–626

    Article  MATH  MathSciNet  Google Scholar 

  12. Domorádová M, Dostál Z, Sadowská M (2009, accepted) Superrelaxation in minimizing quadratic functions subject to bound constraints. Comput Opt Appl

  13. Dostál Z (2009) Optimal Quadratic Programming Algorithms with Applications to Variational Inequalities. Springer Optimizations and Its Applications

  14. Dostál Z (2006) An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum. Computing 78: 311–328

    Article  MATH  MathSciNet  Google Scholar 

  15. Dostál Z (2007) Inexact semimonotonic Augmented Lagrangians with optimal feasibility convergence for quadratic programming with simple bounds and equality constraints. SIAM J Numer Anal 45: 500–513

    Article  MATH  MathSciNet  Google Scholar 

  16. Dostál Z, Friedlander A, Santos SA (2003) Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J Optim 13: 1120–1140

    Article  MATH  MathSciNet  Google Scholar 

  17. Dostál Z, Gomes FAM, Santos SA (2000) Duality based domain decomposition with natural coarse space for variational inequalities. J Comput Appl Math 126: 397–415

    Article  MATH  MathSciNet  Google Scholar 

  18. Dostál Z, Horák D (2003) Scalability and FETI based algorithm for large discretized variational inequalities. Math Comput Sim 61: 347–357

    Article  MATH  Google Scholar 

  19. Dostál Z, Horák D (2007) Theoretically supported scalable FETI for numerical solution of variational inequalities. SIAM J Numer Anal 45: 500–513

    Article  MATH  MathSciNet  Google Scholar 

  20. Dostál Z, Horák D, Kučera R (2006) Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun Numer Meth Eng 22: 1155–1162

    Article  MATH  Google Scholar 

  21. Dostál Z, Malík J, Friedlander A, Santos SA (1996) Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians. Eng Anal Bound El 18: 195–201

    Article  Google Scholar 

  22. Dostál Z, Horák D, Stefanica D (2005) A scalable FETI–DP algorithm for coercive variational inequalities. IMACS J Appl Numer Math 54: 378–390

    Article  MATH  Google Scholar 

  23. Dostál Z, Schöberl J (2005) Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput Opt Appl 30: 23–43

    Article  MATH  Google Scholar 

  24. Dostál Z, Vondrák V., Rasmussen J (2001) FETI based semianalytic sensitivity analysis in contact shape optimization. In: Hoffmann KH, Hoppe RHW, Schulz V (eds) Fast solution of discretized optimization problems, Birkhäuser. International Series of Numerical Mathematics, vol 138, pp 98–106

  25. Dureisseix D, Farhat C (2001) A numerically scalable domain decomposition method for solution of frictionless contact problems. Int J Numer Meth Eng 50: 2643–2666

    Article  MATH  Google Scholar 

  26. Eck C, Steinbach 0, Wendland WL (1999) A symmetric boundary element method for contact problems with friction. Math Comput Simul 50: 43–61

    Article  MATH  MathSciNet  Google Scholar 

  27. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI–DP: a dual–prime unified FETI method—part I: A faster alternative to the two–level FETI method. Int J Numer Meth Eng 50: 1523–1544

    Article  MATH  MathSciNet  Google Scholar 

  28. Farhat C, Mandel J, Roux F-X (1994) Optimal convergence properties of the FETI domain decomposition method. Comput Meth Appl Mech Eng 115: 365–385

    Article  MathSciNet  Google Scholar 

  29. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32: 1205–1227

    Article  MATH  Google Scholar 

  30. Farhat C, Roux F-X (1992) An unconventional domain decomposition method for an efficient parallel solution of large–scale finite element systems. SIAM J Sci Comput 13: 379–396

    Article  MATH  MathSciNet  Google Scholar 

  31. Greengard L, Rokhlin V (1997) A new version of the fast multipole method for the Laplace equation in three dimensions. Acta numerica, Cambridge University Press, London, pp 229–269

    Google Scholar 

  32. Hackbusch W (1999) A sparse matrix arithmetic based on H-Matrices, part I: introduction to \({\mathcal{H}}\)-Matrices. Computing 62: 89–108

    Article  MATH  MathSciNet  Google Scholar 

  33. Han H (1994) The boundary integro–differential equations of three–dimensional Neumann problem in linear elasticity. Numer Math 68: 269–281

    Article  MATH  MathSciNet  Google Scholar 

  34. Hlaváček I, Haslinger J, Nečas J, Lovíšek J (1988) Solution of variational inequalities in mechanics. Springer, Berlin

    MATH  Google Scholar 

  35. Kornhuber R (1997) Adaptive monotone multigrid methods for nonlinear variational problems. Teubner, Stuttgart

    MATH  Google Scholar 

  36. Kornhuber R, Krause R (2001) Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput Visual Sci 4: 9–20

    Article  MATH  MathSciNet  Google Scholar 

  37. Kupradze VD, Gegelia TG, Baseleisvili MO, Burculadze TV (1979) Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. In: North-Holland Series in Applied Mathematics and Mechanics, vol 25. North-Holland Publishing Company, Amsterdam

  38. Langer U, Steinbach O (2003) Boundary element tearing and interconnecting methods. Computing 71: 205–228

    Article  MATH  MathSciNet  Google Scholar 

  39. Langer U, Pechstein C (2007) Coupled FETI/BETI solvers for nonlinear potential problems in (un)bounded domains. In: Ciuprina G, Ioan D (eds) Proceedings of the SCEE 2006, Mathematics in Industry, vol 11. Springer, Heidelberg, pp 371–377

  40. McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, London

    MATH  Google Scholar 

  41. Maischak M, Stephan EP (2005) Adaptive hp-versions of BEM for Signorini problems. Appl Numer Math Archive 54: 425–449

    Article  MATH  MathSciNet  Google Scholar 

  42. Of G (2006) BETI—Gebietszerlegungsmethoden mit schnellen Randelementverfahren und Anwendungen. Ph.D. Thesis, University of Stuttgart. In German

  43. Of G (2008) The All-floating BETI method: numerical results. Lecture Notes in Computational Science and Engineering – selection of 71 refereed papers presented at the 17th international conference on domain decomposition methods. Springer, Heidelberg, pp 295–302

  44. Of G, Steinbach O, Wendland WL (2005) Applications of a fast multipole Galerkin in boundary element method in linear elastostatics. Comput Visual Sci 8: 201–209

    Article  MathSciNet  Google Scholar 

  45. Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, New York

    Google Scholar 

  46. Sadowská M (2008) Scalable Total BETI for 2D and 3D contact problems. Ph.D. Thesis, VŠB—Technical University of Ostrava, http://www.am.vsb.cz/sadowska/publikace

  47. Schöberl J (1998) Solving the Signorini problem on the basis of domain decomposition techniques. Computing 60: 323–344

    Article  MATH  MathSciNet  Google Scholar 

  48. Steinbach O (1999) Fast evaluation of Newton potentials in boundary element methods. East-West J Numer Math 7: 211–222

    MATH  MathSciNet  Google Scholar 

  49. Steinbach O (2003) Stability estimates for hybrid coupled domain decomposition methods. Lecture notes in mathematics, vol 1809. Springer, Berlin

    Google Scholar 

  50. Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements. Springer, New York

    MATH  Google Scholar 

  51. Toselli A, Widlund OB (2005) Domain decomposition methods—algorithms and theory. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  52. Wohlmuth BI, Krause R (2003) Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J Sci Comput 25: 324–347

    Article  MATH  MathSciNet  Google Scholar 

  53. Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, Heidelberg

    MATH  Google Scholar 

  54. Yoshida K, Nishimura N, Kobayashi S (2001) Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int J Numer Methods Eng 50: 525–547

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sadowská.

Additional information

Communicated by W. Hackbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchala, J., Dostál, Z. & Sadowská, M. Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics. Computing 85, 189–217 (2009). https://doi.org/10.1007/s00607-009-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0044-9

Keywords

Mathematics Subject Classification (2000)

Navigation