Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fitting multidimensional data using gradient penalties and the sparse grid combination technique

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Sparse grids, combined with gradient penalties provide an attractive tool for regularised least squares fitting. It has earlier been found that the combination technique, which builds a sparse grid function using a linear combination of approximations on partial grids, is here not as effective as it is in the case of elliptic partial differential equations. We argue that this is due to the irregular and random data distribution, as well as the proportion of the number of data to the grid resolution. These effects are investigated both in theory and experiments. As part of this investigation we also show how overfitting arises when the mesh size goes to zero. We conclude with a study of modified “optimal” combination coefficients who prevent the amplification of the sampling noise present while using the original combination coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Braess D (2001) Finite elements, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Bramble JH, Xu J (1991) Some estimates for a weighted L 2 projection. Math Comput 56: 463–476

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner SC, Scott LR (2002) The mathematical theory of finite element methods. Texts in applied mathematics, 2nd edn, vol 15. Springer, New York

  4. Bungartz H-J, Griebel M, Rüde U (1994) Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput Methods Appl Mech Eng 116: 243–252

    Article  MATH  Google Scholar 

  5. Garcke J (2004) Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. Doktorarbeit, Institut für Numerische Simulation, Universität Bonn

  6. Garcke J (2006) Regression with the optimised combination technique. In: Cohen W, Moore A (eds) Proceedings of the 23rd ICML ’06. ACM Press, New York, NY, USA, pp 321–328

    Chapter  Google Scholar 

  7. Garcke J (2008) An optimised sparse grid combination technique for eigenproblems. In: Proceedings of ICIAM 2007, PAMM, vol 7, pp 1022301–1022302

  8. Garcke J, Griebel M (2002) Classification with sparse grids using simplicial basis functions. Intelligent data analysis 6:483–502 (shortened version appeared in KDD 2001, Proc. of the Seventh ACM SIGKDD, F. Provost and R. Srikant (eds), pp 87–96, ACM, 2001)

  9. Garcke J, Griebel M, Thess M (2001) Data mining with sparse grids. Computing 67: 225–253

    Article  MATH  MathSciNet  Google Scholar 

  10. Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order. Classics in mathematics. Springer, Berlin

    Google Scholar 

  11. Griebel M, Schneider M, Zenger C (1992) A combination technique for the solution of sparse grid problems. In: Groen P, Beauwens R (eds) Iterative methods in linear algebra. IMACS, Elsevier, North Holland, pp 263–281

    Google Scholar 

  12. Hackbusch W (1992) Elliptic differential equations. Springer series in computational mathematics, vol 18. Springer, Berlin

    Google Scholar 

  13. Hegland M (2003) Additive sparse grid fitting. In: Proceedings of the fifth international conference on curves and surfaces, Saint-Malo, France 2002, pp 209–218. Nashboro Press

  14. Hegland M, Garcke J, Challis V (2007) The combination technique and some generalisations. Linear Algebra Appl 420: 249–275

    Article  MATH  MathSciNet  Google Scholar 

  15. Natterer F (1977) Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer Math 28: 329–341

    Article  MATH  MathSciNet  Google Scholar 

  16. Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge

    Google Scholar 

  17. Tikhonov AN, Arsenin VA (1977) Solutions of ill-posed problems. W.H. Winston, Washington D.C.

    MATH  Google Scholar 

  18. Wahba G (1990) Spline models for observational data. Series in applied mathematics, vol 59. SIAM, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Garcke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcke, J., Hegland, M. Fitting multidimensional data using gradient penalties and the sparse grid combination technique. Computing 84, 1–25 (2009). https://doi.org/10.1007/s00607-009-0027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0027-x

Keywords

Mathematics Subject Classification (2000)

Navigation