Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Unsupervised adversarial image retrieval

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The strong feature representation ability of deep learning enables content-based image retrieval (CBIR) to achieve higher retrieval accuracy, while there are still some challenges for CBIR such as high requirements of training labels and retrieve efficiency. In this paper, we propose an unsupervised adversarial image retrieval (UAIR) framework by breaking the limitation of training labels. The framework is composed of two opposite parts and is linked by an adversarial loss function. For each input image, a generative model is used to select “well-matched” images from the database; a discriminative model is used to distinguish whether the selected images are similar enough to the input image. During training, the generative model tries to convince the discriminative model that the selected images are similar and the discriminative model always challenges the results of the generative model. The performances of the UAIR have been compared with other state-of-the-art image retrieval methods, including recently reported GAN-based methods. Extensive experiments show that the UAIR achieves significant improvement in CBIR with unsupervised adversarial training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vadicamo, L.: Large-scale instance-level image retrieval. Inform. Process. Manag. 57, 102100 (2019)

    Article  Google Scholar 

  2. SKY, B., Reddy, S.K., Mishra, A.: A zero-shot framework for sketch based image retrieval. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) ECCV 2018, Springer International Publishing, Lecture Notes in Computer Science, vol 11219, pp 316–333, 1311.2901 (2018)

  3. Bai, C., Huang, L., Pan, X., Zheng, J., Chen, S.: Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 303, 60–67 (2018)

    Article  Google Scholar 

  4. Cao, Y., Liu, B., Long, M., Wang, J.: Hashgan: Deep learning to hash with pair conditional wasserstein gan. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

  5. Chadha, A., Andreopoulos, Y.: Voronoi-based compact image descriptors: efficient region-of-interest retrieval with VLAD and deep-learning-based descriptors. IEEE Trans. Multimed. 19(7), 1596–1608 (2017)

    Article  Google Scholar 

  6. Chen, Z., Lu, J., Feng, J., Zhou, J.: Nonlinear discrete hashing. IEEE Trans. Multimed. 19(1), 123–135 (2017)

    Article  Google Scholar 

  7. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.T.: Nus-wide: a real-world web image database from national university of Singapore. In: Proc. of ACM Conf. on Image and Video Retrieval (CIVR’09), Santorini, Greece (2009)

  8. Clarivate (2020) Web of science. https://apps.webofknowledge.com/. Accessed Dec 2020

  9. Creswell, A., Bharath, A.A.: Adversarial training for sketch retrieval. In: European Conference on Computer Vision Workshops, pp 798–809 (2016)

  10. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval : ideas, influences, and trends of the new Age. ACM Comput. Surv. 40(2), 1–60 (2008)

    Article  Google Scholar 

  11. Gan, Y., Gong, J., Ye, M., Qian, Y., Liu, K.: Unpaired cross domain image translation with augmented auxiliary domain information. Neurocomputing 316, 112–123 (2018)

    Article  Google Scholar 

  12. Gao, J., Yang, X., Zhang, Y., Xu, C.: Unsupervised video summarization via relation-aware assignment learning. IEEE Trans. Multimed. 23, 3203–3214 (2020)

    Article  Google Scholar 

  13. Gao, J., Zhang, T., Xu, C.: Learning to model relationships for zero-shot video classification. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3476–3491 (2020)

    Article  Google Scholar 

  14. Ghasedi Dizaji, K., Zheng, F., Sadoughi, N., Yang, Y., Deng, C., Huang, H.: Unsupervised deep generative adversarial hashing network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

  15. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  16. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: European Conference on Computer Vision, pp 392–407 (2014)

  17. Goodfellow, I., Pougetabadie, J., Mirza, M., Xu, B., Wardefarley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inform. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  18. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: European Conference on Computer Vision, pp 241–257 (2016)

  19. Guo, L., Liu, J., Wang, Y., Luo, Z., Wen, W., Lu, H.: Sketch-based image retrieval using generative adversarial networks. In: Proceedings of the ACM on Multimedia Conference, pp 1267–1268 (2017)

  20. Hashemi, A.S., Mozaffari, S.: Secure deep neural networks using adversarial image generation and training with Noise-GAN. Comput. Secur. 86, 372–387 (2019)

    Article  Google Scholar 

  21. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing: binary code embedding with hyperspheres. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2304–2316 (2015)

    Article  Google Scholar 

  22. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2261–2269 (2017)

  23. Huang, L., Bai, C., Lu, Y., Chen, S., Tian, Q.: Adversarial learning for Content-based Image Retrieval. In: 2nd IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR), IEEE; IEEE Comp Soc, pp 97–102 (2019)

  24. Iscen, A., Tolias, G., Avrithis, Y., Furon, T., Chum, O.: Efficient diffusion on region manifolds: Recovering small objects with compact cnn representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 926–935 (2017)

  25. Iscen, A., Avrithis, Y., Tolias, G., Furon, T., Chum, O.: Fast spectral ranking for similarity search. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7632–7641 (2018)

  26. Kang, Y., Kim, S., Choi, S.: Deep learning to hash with multiple representations. In: IEEE 12th International Conference on Data Mining, pp 930–935 (2012)

  27. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto, Toronto, Canada (2009)

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp 1097–1105 (2012)

  29. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  30. Li, P., Cheng, J., Lu, H.: Hashing with dual complementary projection learning for fast image retrieval. Neurocomputing 120, 83–89 (2013)

    Article  Google Scholar 

  31. Li, Z., Tang, J.: Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans. Multimed. 17(11), 1989–1999 (2015)

    Article  Google Scholar 

  32. Liang, J., Hu, Q., Wang, W., Han, Y.: Semisupervised online multikernel similarity learning for image retrieval. IEEE Trans. Multimed. 19(5), 1077–1089 (2017)

    Article  Google Scholar 

  33. Lu, J., Liong, V.E., Zhou, J.: Deep hashing for scalable image search. IEEE Trans. Image Process. 26(5), 2352–2367 (2017)

    Article  MathSciNet  Google Scholar 

  34. Meden, B., Mallı, R.C., Fabijan, S., Ekenel, H.K., Struc, V., Peer, P.: Face deidentification with generative deep neural networks. IET Signal Proc. 11(9), 1046–1054 (2017)

    Article  Google Scholar 

  35. Mishra, D., Chaudhury, S., Sarkar, M., Soin, A.S.: Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process. Lett. 25(9), 1349–1353 (2018)

    Article  Google Scholar 

  36. Norouzi, M., Fleet, D.J., Salakhutdinov, R.R.: Hamming distance metric learning. Adv. Neural Inform. Process. Syst. 25, 1061–1069 (2012)

    Google Scholar 

  37. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  38. Pang, S., Ma, J., Zhu, J., Xue, J., Tian, Q.: Improving object retrieval quality by integration of similarity propagation and query expansion. IEEE Trans. Multimed. 21, 1 (2018)

    Google Scholar 

  39. Shamna, P., Govindan, V., Nazeer, K.A.: Content based medical image retrieval using topic and location model. J. Biomed. Inform. 91, 103112 (2019)

    Article  Google Scholar 

  40. Shang, F., Zhang, H., Zhu, L., Sun, J.: Adversarial cross-modal retrieval based on dictionary learning. Neurocomputing 355, 93–104 (2019)

    Article  Google Scholar 

  41. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 37–45 (2015)

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. (2015). arXiv preprint arXiv:14091556

  43. Song, J., He, T., Gao, L., Xu, X., Hanjalic, A., Shen, H.T.: Binary generative adversarial networks for image retrieval. In: AAAI Conference on Artificial Intelligence, pp 394–401 (2018)

  44. Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Improved ArtGAN for conditional synthesis of natural image and artwork. IEEE Trans. Image Process. 28(1), 394–409 (2019)

    Article  MathSciNet  Google Scholar 

  45. Tian, X., Zhou, X., Ng, W.W., Li, J., Wang, H.: Bootstrap dual complementary hashing with semi-supervised re-ranking for image retrieval. Neurocomputing 379, 103–116 (2019)

    Article  Google Scholar 

  46. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the ACM International Conference on Multimedia, pp 689–692 (2015)

  47. Wan, J., Wang, D., Hoi, S.C.H., Wu, P., Zhu, J., Zhang, Y., Li, J.:Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the ACM International Conference on Multimedia, pp 157–166 (2014)

  48. Wang, B., Yang, Y., Xu, X., Hanjalic, A., Shen, H.T.: Adversarial cross-modal retrieval. In: Proceedings of the ACM on Multimedia Conference, pp 154–162 (2017)

  49. Wang, H., Cai, Y., Zhang, Y., Pan, H., Lv, W., Han, H.: Deep learning for image retrieval: what works and what doesn’t. In: IEEE International Conference on Data Mining Workshop, pp 1576–1583 (2015)

  50. Wang, W., Gao, J., Yang, X., Xu, C.: Learning coarse-to-fine graph neural networks for video-text retrieval. IEEE Trans. Multimed. 23, 2386–2397 (2020)

    Article  Google Scholar 

  51. Wu, Y., Gao, F., Huang, Y., Lin, J., Chandrasekhar, V., Yuan, J., Duan, L.Y.: Codebook-free compact descriptor for scalable visual search. IEEE Trans. Multimed. 21(2), 388–401 (2019)

    Article  Google Scholar 

  52. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3485–3492 (2010)

  53. Xie, L., Wang, J., Zhang, B., Tian, Q.: Fine-grained image search. IEEE Trans. Multimed. 17(5), 636–647 (2015)

    Article  Google Scholar 

  54. Xu, W., Keshmiri, S., Wang, G.R.: Adversarially approximated autoencoder for image generation and manipulation. IEEE Trans. Multimed. 21, 1 (2019)

    Article  Google Scholar 

  55. Xu, X., Song, J., Lu, H., Yang, Y., Shen, F., Huang, Z.: Modal-adversarial semantic learning network for extendable cross-modal retrieval. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval - ICMR ’18, pp 46–54 (2018)

  56. Yandex, A.B., Lempitskym, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1269–1277 (2015)

  57. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. In: AAAI, pp 2852–2858 (2017)

  58. Zhang, X., Li, X., Li, X., Shen, M.: Better freehand sketch synthesis for sketch-based image retrieval: Beyond image edges. Neurocomputing 322, 38–46 (2018)

    Article  Google Scholar 

  59. Zhao, D., Weng, J., Liu, Y.: Generating traffic scene with deep convolutional generative adversarial networks. In: Chinese Automation Congress, pp 6612–6617 (2017)

  60. Zhao, G., Zhang, M., Liu, J., Wen, J.R.: Unsupervised adversarial attacks on deep feature-based retrieval with GAN. (2019) arXiv preprint arXiv:190705793

  61. Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1224–1244 (2018)

    Article  Google Scholar 

  62. Zhou, X., Shen, F., Liu, L., Liu, W., Nie, L., Yang, Y., Shen, H.T.: Graph convolutional network hashing. IEEE Trans. Cybern. Early Access 50, 1–13 (2018)

    Google Scholar 

Download references

Acknowledgements

This research is funded by Zhejiang Provincial Natural Science Foundation of China under Grant No. LR21F020002, National Natural Science Foundation of China under Grant No. 61976192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Bai.

Additional information

Communicated by B-K Bao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Bai, C., Lu, Y. et al. Unsupervised adversarial image retrieval. Multimedia Systems 28, 673–685 (2022). https://doi.org/10.1007/s00530-021-00866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00866-7

Keywords

Navigation