Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image compression and encryption algorithm based on 2D compressive sensing and hyperchaotic system

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Aiming at the security and efficiency problems in the process of image transmission, an image compression–encryption scheme based on 2D compressive sensing and hyperchaotic system is proposed in this paper. First, we construct a hyperchaotic system with more complex chaotic behavior, which is used to construct the measurement matrix of compressive sensing. Then, two-dimensional compressive sensing is used to compress the image. Compared with one-dimensional sensing, it achieves faster execution efficiency and better image reconstruction quality. Finally, to improve the encryption security, we use the multiplicative inverse operation in the finite domain to diffuse the cipher image after compressive sensing. The experimental simulation results show that the algorithm in this paper has higher execution efficiency, better image reconstruction quality, great security and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval[J]. IEEE Trans Pattern Anal Mach Intell (2020). https://doi.org/10.1109/TPAMI.2020.2975798

    Article  Google Scholar 

  2. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., Zhang, Y.: Depth image denoising using nuclear norm and learning graph model[J]. ACM Trans Multimedia Comput Commun Appl (2020). https://doi.org/10.1145/3404374

    Article  Google Scholar 

  3. Yan, C., Hao, Y., Li, L., Yin, J., Liu, A., Mao, Z., Chen, Z., Gao, X.: Task-adaptive attention for image captioning[J]. IEEE Trans Circuits Syst Video Technol (2021). https://doi.org/10.1109/TCSVT.2021.3067449

    Article  Google Scholar 

  4. Meng, L., Yan, C., Li, J., et al.: Multi-Features Fusion and Decomposition for Age-Invariant Face Re cognition[C], MM '20: The 28th ACM International Conference on Multimedia. ACM., pp. 3146–3154 (2020)

  5. Hennelly, B., Sheridan, J.T.: Optical image encryption by random shifting in fractional Fourier domains[J]. Opt Lett 28, 269–271 (2003)

    Article  Google Scholar 

  6. Singh, N., Sinha, A.: Gyrator transform-based optical image encryption using chaos[J]. Opt Lett 47, 539–546 (2019)

    Google Scholar 

  7. Situ, G.H., Zhang, J.J.: Double random-phase encoding in the Fresnel domain[J]. Opt Lett 29, 1584–1586 (2004)

    Article  Google Scholar 

  8. Liu, W.H., Sun, K.H., He, Y., Yu, M.Y.: Color image encryption using three-dimensional sine ICMIC modulation map and DNA sequence operations[J]. Int J Bifurc Chaos 27(11), 1750171 (2017)

    Article  Google Scholar 

  9. Chai, X.L., Chen, Y.R., Broyde, L.: A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Opt Laser Eng 88, 197–213 (2017)

    Article  Google Scholar 

  10. Wang, X.Y., Wang, S.W., Zhang, Y.Q., Luo, C.: A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems[J]. Opt Laser Eng 103, 1–8 (2018)

    Article  Google Scholar 

  11. Liu, H.J., Kaidir, A., Sun, X.B., Li, Y.L.: Chaos based adaptive double-image encryption scheme using hash function and s-boxes[J]. Multimed Tools Appl 77(1), 1391–1407 (2018)

    Article  Google Scholar 

  12. Manupriya, P., Sinha S., and Kumar, K.: “V⊕SEE: Video secret sharing encryption technique,” 2017 Conference on Information and Communication Technology (CICT), pp. 1-6, (2017). doi: https://doi.org/10.1109/INFOCOMTECH.2017.8340639

  13. Sharma S., Kumar K.: GUESS: Genetic Uses in Video Encryption with Secret Sharing. In: Chaudhuri B., Kankanhalli M., Raman B. (eds) Proceedings of 2nd International Conference on Computer Vision & Image Processing. Advances in Intelligent Systems and Computing, vol 703. Springer, Singapore. (2018) https://doi.org/10.1007/978-981-10-7895-8_5

  14. Koppanati R.K., Kumar K., Qamar S.: E-MOC: An Efficient Secret Sharing Model for Multimedia on Cloud. In: Tripathi M., Upadhyaya S. (eds) Conference Proceedings of ICDLAIR2019. ICDLAIR 2019. Lecture Notes in Networks and Systems, vol 175. Springer, Cham. (2021) https://doi.org/10.1007/978-3-030-67187-7_26

  15. Koppanati, R. K., Qamar, S. and Kumar, K.: “SMALL: Secure Multimedia Technique Using Logistic and LFSR,” 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1820-1825, (2018). doi: https://doi.org/10.1109/ICCONS.2018.8662840

  16. Kumar, A. and Makur A.: Lossy compression of encrypted image by compressing sensing technique, in Proc. of IEEE Region 10 Conf. TENCON, pp. 1–6, (2009)

  17. Liu, H., Xiao, D., Zhang, R., Zhang, Y., Bai, S.: Robust and hierarchical watermarking of encrypted images based on compressive sensing[J]. Signal Process Image Commun 45, 41–51 (2016)

    Article  Google Scholar 

  18. Liao, X., Li, K., Yin, J.: Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform[J]. Multimed Tools Appl 76(20), 20739–20753 (2017)

    Article  Google Scholar 

  19. Chen, J.X., Zhang, Y., Qi, L.: Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression[J]. Opt Laser Technol 99, 238–248 (2018)

    Article  Google Scholar 

  20. Lu, P., Xu, Z., Lu, X., et al.: Digital image information encryption based on compressive sensing and double random-phase encoding technique[J]. Optik 124(16), 2514–2518 (2013)

    Article  Google Scholar 

  21. Liu, H., Liu, Y.B., Xu, G.X.: Securely compressive sensing using double random phase encoding[J]. Adv Mat Res 926–930, 3554–3558 (2015)

    Google Scholar 

  22. Zhou, N., Zhang, A., Zheng, F., et al.: Novel image compression–encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing[J]. Optics Laser Technol 62, 152–160 (2014)

    Article  Google Scholar 

  23. Zhou, N., Zhang, A., Wu, J., et al.: Novel hybrid image compression–encryption algorithm based on compressive sensing[J]. Optik 125(18), 5075–5080 (2014)

    Article  Google Scholar 

  24. Gong, L.: An optical image compression and encryption scheme based on compressive sensing and RSA algorithm[J]. Opt Lasers Eng 121, 169–180 (2019)

    Article  Google Scholar 

  25. Song, Y., Zhu, Z., Zhang, W., et al.: Joint image compression–encryption scheme using entropy coding and compressive sensing[J]. Nonlinear Dyn 95(3), 2235–2261 (2019)

    Article  Google Scholar 

  26. Shuyu, Y., Linfei, C., Yuan, Z.: An encryption system for color image based on compressive sensing[J]. Optics Laser Technol (2019). https://doi.org/10.1016/j.optlastec.2019.105703

    Article  Google Scholar 

  27. Gan, H., Xiao, S., Zhang, T., et al.: Bipolar measurement matrix using chaotic sequence[J]. Commun Nonlinear Sci Numer Simul 72, 139–151 (2019)

    Article  MathSciNet  Google Scholar 

  28. Gan, H., Song, X., Zhao, Y.: A large class of chaotic sensing matrices for compressive sensing[J]. Signal Process 149, 193–203 (2018)

    Article  Google Scholar 

  29. Zeng, L., Zhang, X., Chen, L., et al.: Deterministic construction of toeplitzed structurally chaotic matrix for compressive sensing[J]. Circuits Syst Signal Process 34(3), 797–813 (2015)

    Article  Google Scholar 

  30. Gan, H., Xiao, S., Zhao, Y., et al.: Construction of efficient and structural chaotic sensing matrix for compressive sensing[J]. Signal Process image Commun 68, 129–137 (2018)

    Article  Google Scholar 

  31. Wang, Q.Z., Wei, M.Y., Chen, X.M., Miao, Z.: Joint encryption and compression of 3D images based on tensor compressive sensing with non-autonomous 3D chaotic system[J]. Multi Tools Appl 77(2), 1715–1734 (2018)

    Article  Google Scholar 

  32. Ponuma, R., Amutha, R.: Encryption of image data using compressive sensing and chaotic system[J]. Multimedia Tools Appl 78, 11857–11881 (2019)

    Article  Google Scholar 

  33. Ponuma, R., Amutha, R.: Compressive sensing based image compression-encryption using novel 1D-chaotic map[J]. Multimed Tools Appl 77(15), 19209–19234 (2018)

    Article  Google Scholar 

  34. Chai, X., Zheng, X., Gan, Z., et al.: An image encryption algorithm based on chaotic system and compressive sensing[J]. Signal Process 148, 124–144 (2018)

    Article  Google Scholar 

  35. Chai, X., Ganc, Z.: A visually secure image encryption scheme based on compressive sensing[J]. Signal Process. 134, 35–51 (2017)

    Article  Google Scholar 

  36. Zhu, S., Zhu, C.: A new image compression-encryption scheme based on compressive sensing and cyclic shift[J]. Multimed Tools Appl 78(15), 20855–20875 (2019)

    Article  Google Scholar 

  37. Mun, S. and Fowler, J. E.: Block compressive sensing of images using directional transforms[C], in Proc. of 2019 International Conference on Image Processing, pp. 3021–3024, (2009)

  38. Zhang, B. L., Yang, K., Wang Cao, Y. Q.: Block compressed sensing using two-dimensional random permutation for image Encryption-thenCompression applications[C], in Proc. of 14th IEEE International Conference on Signal Processing, pp. 312–316, (2018)

  39. Zhou, N.R., Li, H.L., Wang, D., Pan, S.M., Zhou, Z.H.: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform[J]. Opt Commun 343, 1021 (2015)

    Article  Google Scholar 

  40. Zhang, Di.: A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform[J]. Multimed Tools Appl 77, 2191–2208 (2018)

    Article  Google Scholar 

  41. Xu, Q., Sun, K., Cao, C., et al.: A fast image encryption algorithm based on compressive sensing and hyperchaotic map[J]. Optics Lasers Eng 121, 203–214 (2019)

    Article  Google Scholar 

  42. Yang, Y.G., Guan, B.W., Li, J., et al.: Image compression-encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding[J]. Optics Laser Technol 119, 105661 (2019). https://doi.org/10.1016/j.optlastec.2019.105661

    Article  Google Scholar 

  43. Zhou, N., Pan, S., Cheng, S., et al.: Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing[J]. Optics Laser Technol 82, 121–133 (2016)

    Article  Google Scholar 

  44. Xu, Q., Sun, K., He, S., et al.: An effective image encryption algorithm based on compressive sensing and 2D-SLIM[J]. Optics Lasers Eng (2020). https://doi.org/10.1016/j.optlaseng.2020.106178

    Article  Google Scholar 

  45. Zhang, B., Xiao, D., Xiang, Y.: Robust coding of encrypted images via 2D compressive sensing[J]. IEEE Trans Multimed (2020). https://doi.org/10.1109/TMM.2020.3014489

    Article  Google Scholar 

  46. Xudong, L., Xiaojun, T., Zhu, W., Miao, Z.: Efficient high nonlinearity S-box generating algorithm based on third-order nonlinear digital filter[J]. Chaos Solitons Fractals (2021). https://doi.org/10.1016/j.chaos.2021.111109

    Article  MathSciNet  Google Scholar 

  47. Liu, J., Tong, X., et al.: A joint encryption and error correction scheme based on chaos and LDPC[J]. Nonlinear Dyn (2018). https://doi.org/10.1007/s11071-018-4250-x

    Article  Google Scholar 

  48. Liu, Y.J.: Hyperchaotic system from controlled Rabinovich system[J]. Control Theory Appl 28(11), 1671–1678 (2011)

    Google Scholar 

  49. Ma, J., Chen, Z., Wang, Z., et al.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium[J]. Nonlinear Dyn 81(3), 1275–1288 (2015)

    Article  Google Scholar 

  50. Chen, Y.M., Yang, Q.G.: A new Lorenz-type hyperchaotic system with a curve of equilibria[J]. Math Comput Simul 112(7), 40–55 (2015)

    Article  MathSciNet  Google Scholar 

  51. Liu, J.L., Zhang, M., Tong, X., et al.: Image compression and encryption algorithm based on compressive sensing and nonlinear diffusion[J]. Multimed Tools Appl 80(17), 25433–25452 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following projects and foundations: the National Natural Science Foundation of China (No.61902091), project ZR2019MF054 supported by Shandong Provincial Natural Science Foundation and the Fundamental Research Funds for the Central Universities (HIT.NSRIF.2020099), the Foundation of Science and Technology on Information Assurance Laboratory (No.KJ-17-004), Equip Preresearch Projects of 2018 supported by Foundation of China Academy of Space Technology (No. WT-TXYY/WLZDFHJY003), 2017 Weihai University Co-construction Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Zhang or Xiaojun Tong.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, M., Tong, X. et al. Image compression and encryption algorithm based on 2D compressive sensing and hyperchaotic system. Multimedia Systems 28, 595–610 (2022). https://doi.org/10.1007/s00530-021-00859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00859-6

Keywords

Navigation