Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Music mood and human emotion recognition based on physiological signals: a systematic review

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Scientists and researchers have tried to establish a bond between the emotions conveyed and the subsequent mood perceived in a person. Emotions play a major role in terms of our choices, preferences, and decision-making. Emotions appear whenever a person perceives a change in their surroundings or within their body. Since early times, a considerable amount of effort has been made in the field of emotion detection and mood estimation. Listening to music forms a major part of our daily life. The music we listen to, the emotions it induces, and the resulting mood are all interrelated in ways we are unbeknownst to, and our survey is entirely based on these two areas of research. Differing viewpoints on this issue have led to the proposal of different ways of emotion annotation, model training, and result visualization. This paper provides a detailed review of the methods proposed in music mood recognition. It also discusses the different sensors that have been utilized to acquire various physiological signals. This paper will focus upon the datasets created and reused, different classifiers employed to obtain results with higher accuracy, features extracted from the acquired signals, and music along with an attempt to determine the exact features and parameters that will help in improving the classification process. It will also investigate several techniques to detect emotions and the different music models used to assess the music mood. This review intends to answer the questions and research issues in identifying human emotions and music mood to provide a greater insight into this field of interest and develop a better understanding to comprehend and answer the perplexing problems that surround us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Available at https://www.nielsen.com/in/en/insights/report/2018/india-music-360-report, The Nielsen Company (US) (Last Checked—6-Jan-2020) .

  2. Available at https://indianmi.org/?id=12060&t=Digital%20Music%20Study,%202019 (Last Checked—6-Jan-2020).

  3. Available at https://github.com/tyiannak/pyAudioAnalysis (Last Checked—6-Jan-2020).

  4. Available at https://librosa.github.io/librosa (Last Checked—6-Jan-2020).

References

  1. Abadi, M.K., Subramanian, R., Kia, S.M., Avesani, P., Patras, I., Sebe, N.: DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Trans. Affect. Comput. 6(3), 209–222 (2015). https://doi.org/10.1109/TAFFC.2015.2392932

    Article  Google Scholar 

  2. Acharya, U.R., Hagiwara, Y., Deshpande, S.N., Suren, S., Koh, J.E., Oh, S.L., Arunkumar, N., Ciaccio, E.J., Lim, C.M.: Characterization of focal EEG signals: a review. Future Gener. Comput. Syst. 91(2019), 290–299 (2018). https://doi.org/10.1016/j.future.2018.08.044

    Article  Google Scholar 

  3. Alakuş T.B., Turkoglu I. (2018). Determination of accuracies from different wavelet methods in emotion estimation based on EEG signals by applying KNN classifier. In: 3rd International Conference on Engineering Technology and Applied Science, pp 250–254 (2018)

  4. Alarcão, S.M., Fonseca, M.J.: Emotions recognition using EEG signals: a survey. IEEE Trans. Affective Comput. 10(3), 374–393 (2019). https://doi.org/10.1109/TAFFC.2017.2714671

    Article  Google Scholar 

  5. Aljanaki, A., Yang, Y.H., Soleymani, M.: Developing a benchmark for emotional analysis of music. PLoS ONE 12(3), 2017 (2017). https://doi.org/10.1371/journal.pone.0173392

    Article  Google Scholar 

  6. Aljanaki, F.W., Veltkamp, R.C.: (2015) Studying emotion induced by music through a crowdsourcing game. Inf. Process. Manag. 52(1), 115–128 (2015)

    Article  Google Scholar 

  7. Andersson, P.K., Kristensson, P., Wastlund, E., Gustafsson, A.: Let the music play or not: the influence of background music on consumer behaviour. J. Retail. Consumer Behavior 19(6), 553–560 (2012)

    Article  Google Scholar 

  8. Andrzejak, R.G., Schindler, K., Rummel, C.: Non-Randomness, nonlinear dependence, and non-stationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. Am. Phys. Soc. E 86, 2012 (2012). https://doi.org/10.1103/PhysRevE.86.046206

    Article  Google Scholar 

  9. Arnrich, B., Marca, R.L., Ehlert, U.: Self-Organizing Maps for Affective State Detection. 2010, 1–8 (2010)

    Google Scholar 

  10. Atkinson, J., Campos, D.: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47(C), 35–41 (2016). https://doi.org/10.1016/j.eswa.2015.10.049

    Article  Google Scholar 

  11. Besson, M., Faïta, F., Peretz, I., Bonnel, A., Requin, J.: Singing in the brain: independence of lyrics and tunes. Psychol. Sci. 9(6), 494–498 (1998)

    Article  Google Scholar 

  12. Bhatti, A.M., Majid, M., Anwar, S.M., Khan, B.: Human emotion recognition and analysis in response to audio music using brain signals. Comput. Hum. Behav. 65(2), 267–275 (2016). https://doi.org/10.1016/j.chb.2016.08.029

    Article  Google Scholar 

  13. Bittner R., Salamon J, Tierney M., Mauch M., Cannam C., Bello J.P.: MedleyDB: a multitrack dataset for annotation-intensive MIR research. In: 15th International Society for Music Information Retrieval Conference, ISMIR, pp 155–160 (2014)

  14. Bojorquez, G.R., Jackson, K.E., Andrews, A.K.: Music therapy for surgical patients. Crit. Care Nurs. Q. 43(1), 81–85 (2020). https://doi.org/10.1097/cnq.0000000000000294

    Article  Google Scholar 

  15. Bos D.O.: EEG-based Emotion Recognition. The Influence of Visual and Auditory Stimuli (2006)

  16. Brown L., Grundlehner B., Penders J.: Towards wireless emotional valence detection from EEG. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2188–2191 (2011). https://doi.org/10.1109/IEMBS.2011.6090412

  17. Chanel G., Ansari-Asl K., Pun T.: Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In: IEEE International Conference on Systems, Man and Cybernetics, Montreal, pp. 2662–2667 (2007)

  18. Chen, Y.-A., Yang Y-H., Wang J-C., Chen H.: The AMG1608 dataset for music emotion recognition. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). QLD, pp. 693–697 (2015). https://doi.org/10.1109/icassp.2015.7178058

  19. Defferrard M., Benzi K., Vandergheynst P., Bresson X.: FMA: a dataset for music analysis. In: 18th International Society for Music Information Retrieval Conference 2017 (2017). arxiv.org/abs/1612.01840

  20. Duan R., Zhu J., Lu B. Differential entropy feature for EEG-based emotion classification. In: 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 81–84 (2013). https://doi.org/10.1109/NER.2013.6695876

  21. Eerola, T., Vuoskoski, J.K.: A comparison of the discrete and dimensional models of emotion in music. Psychol. Music 39(1), 18–49 (2010). https://doi.org/10.1177/0305735610362821

    Article  Google Scholar 

  22. Ekman, P.: An Argument for Basic Emotions. Cognition Emotion 6(3–4), 169–200 (1992). https://doi.org/10.1080/02699939208411068

    Article  Google Scholar 

  23. Fernández-Aguilar, L., Martínez-Rodrigo, A., Moncho-Bogani, J., Fernández-Caballero, A., Latorre, J.M.: Emotion detection in aging adults through continuous monitoring of electro-dermal activity and heart-rate variability. IWINAC (2019). https://doi.org/10.1007/978-3-030-19591-5_26

    Article  Google Scholar 

  24. Fernández-Sotos, A., Fernández-Caballero, A., Latorre, J.M.: Influence of tempo and rhythmic unit in musical emotion regulation. Front. Comput. Neurosci. 10(80), 1–13 (2016)

    Google Scholar 

  25. Foote, J.: Content-based retrieval of music and audio. Multimed. Storage Arch. Syst. II 3229, 1997 (1997). https://doi.org/10.1117/12.290336

    Article  Google Scholar 

  26. Fu, Z., Lu, G., Ting, K.M., Zhang, D.: A survey of audio-based music classification and annotation. IEEE Trans. Multimed. 13(2), 303–319 (2011)

    Article  Google Scholar 

  27. Gemmeke J.F., Ellis D., Freedman D., Jansen A., Lawrence W., Moore R.C., Plakal M., Ritter M.: Audio Set: an ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 776–780 (2017). https://doi.org/10.1109/ICASSP.2017.7952261.

  28. Hadjidimitriou, S., Hadjileontiadis, L.J.: EEG-based classification of music appraisal responses using time-frequency analysis and familiarity ratings. IEEE Trans. Affect. Comput. 4(2), 161–172 (2013). https://doi.org/10.1109/T-AFFC.2013.6

    Article  Google Scholar 

  29. Hadjidimitriou, S.K., Hadjileontiadis, L.J.: Towards an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans. Biomed. Eng. 59(2012), 3498–3510 (2012). https://doi.org/10.1109/TBME.2012.2217495

    Article  Google Scholar 

  30. Harati A., Lopez S., Obeid I., Picone J., Jacobson M., Tobochnik S.: The TUH EEG CORPUS: a big data resource for automated EEG interpretation. In: IEEE Signal Processing in Medicine and Biology Symposium, IEEE SPMB (2014). https://doi.org/10.1109/SPMB.2014.7002953

  31. Hevner, K.: Experimental studies of the elements of expression in music. Am. J. Psychol. 48(2), 246–268 (1936)

    Article  Google Scholar 

  32. Homburg, H., Mierswa, I., Moller, B., Morik, K., Wurst, M.: A benchmark dataset for audio classification and clustering. Int. Symp. Music Inf. Retrieval 2005, 528–531 (2005)

    Google Scholar 

  33. Hosseini, S.A., Naghibi-Sistani, M.B., Rahati-quchani, S.: Dissection and analysis of psychophysiological and EEG signals for emotional stress evaluation. J. Biol. Syst. 18(spec01), 101–114 (2010)

    Article  Google Scholar 

  34. Hu X., Downie J. S., Laurier C., Bay M., Ehmann A.F.: The 2007 Mirex audio mood classification task: Lessons learned. In: ISMIR 9th International Conference on Music Information Retrieval, pp. 462–467 (2008). https://doi.org/10.5281/zenodo.1416380

  35. Hu X., Sanghvi V.R., Vong B., On P.J., Leong C.N., Angelica J.: Moody: a web-based music mood classification and recommendation system. In: Proceedings of the International Conference on Music Information Retrieval (2008)

  36. Huron D.: Perceptual and cognitive applications in music information retrieval. In: ISMIR, 1st International Symposium on Music Information Retrieval (2000)

  37. Ito, S., Mitsukura, Y., Fukumi, M., Akamatsu, N.: A feature extraction of the EEG during listening to the music using the factor analysis and neural networks. Proc. Int. Jt. Conf. Neural Netw. 3, 2263–2267 (2003). https://doi.org/10.1109/IJCNN.2003.1223763

    Article  Google Scholar 

  38. Ito S., Mitsukura Y., Fukumi M., Cao J. (2007). Detecting method of music to match the user's mood in prefrontal cortex EEG activity using the GA. In: International Conference on Control, Automation and Systems, Seoul, South Korea, (2007). https://doi.org/10.1109/ICCAS.2007.4406685

  39. Jain, R., Bagdare, S.: Music and consumption experience: a review. Int. J. Retail Distrib. Manag. 39(4), 289–302 (2011). https://doi.org/10.1108/09590551111117554

    Article  Google Scholar 

  40. Jaques N., Rudovic O., Taylor S., Sano A., Picard R.: Predicting tomorrow’s mood, health, and stress level using personalized multitask learning and domain adaptation. In: IJCAI 2017 Workshop on Artificial Intelligence in Affective Computing, Journal of Machine Learning Research Vol. 66, pp. 17–33 (2017)

  41. Jatupaiboon, N., Pan-Ngum, S., Israsena, P.: Real-time EEG-based happiness detection system. Sci. World J. (2013). https://doi.org/10.1155/2013/618649

    Article  Google Scholar 

  42. Jerritta S., Murugappan M., Nagarajan R., Wan K.: Physiological signals based human emotion recognition: a review. In: IEEE 7th International Colloquium on Signal Processing and its Applications, pp. 410–415 (2011)

  43. Jiang, D., Lu, L., Zhang, H., Tao, J., Cai, L.: Music type classification by spectral contrast feature. IEEE Int. Conf. Multimed. Expo 1(2002), 113–116 (2002)

    Article  Google Scholar 

  44. Juslin, P.N., Laukka, P.: Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. New Music Res. 33(2004), 217–238 (2004). https://doi.org/10.1080/0929821042000317813

    Article  Google Scholar 

  45. Khosrowabadi R., Quek H.C., Wahab A., Ang K.K.: EEG-based emotion recognition using self-organizing map for boundary detection. In: 20th International Conference on Pattern Recognition, ICPR’10. IEEE Computer Society, pp. 4242–4245 (2010). https://doi.org/10.1109/ICPR.2010.1031

  46. Khosrowabadi R., Wahab A., Ang K.K., Baniasad M.H.: Affective computation on EEG correlates of emotion from musical and vocal stimuli. In: International Joint Conference on Neural Networks, Atlanta, GA, USA (2009). https://doi.org/10.1109/IJCNN.2009.5178748

  47. Kim, D., Koo, D.: Analysis of pre-processing methods for music information retrieval in noisy environments using mobile devices. Int. J. Contents 8(2), 1–6 (2012). https://doi.org/10.5392/IJOC.2012.8.2.001

    Article  Google Scholar 

  48. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42(2004), 419–427 (2004). https://doi.org/10.1007/BF02344719

    Article  Google Scholar 

  49. Kim Y.E., Schmidt E.M., Migneco R., Morton B.G., Richardson P., Scott J.J., Speck J.A., Turnbull D.: State of the art report: music emotion recognition: a state-of-the-art review. In: International Society for Music Information Retrieval Conference ISMIR (2010)

  50. Kim Y.E., Schmidt E.M., Emelle L.: MoodSwings: a collaborative game for music mood label collection. In: ISMIR, pp. 231–236 (2008)

  51. Koelstra, S., Mühl, C., Soleymani, M., Jong-Seok, L., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affective Comput. 3(1), 18–31 (2011). https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  52. Lahane, P.U., Thirugnanam, M.: Human emotion detection and stress analysis using EEG signal. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(42), 96–100 (2019)

    Google Scholar 

  53. Lang, P.J.: The emotion probe: studies of motivation and attention. Am. Psychol. Assoc. 50(5), 372–385 (1995)

    Article  Google Scholar 

  54. Laurier C., Grivolla, N., Herrera P.: Multimodal music mood classification using audio and lyrics. In: 7th International Conference on Machine Learning and Applications, pp. 688–693 (2008). https://doi.org/10.1109/ICMLA.2008.96

  55. Law E., Ahn L.V., Dannenberg R.B., Crawford M.J.: TagATune: a game for music and sound annotation. In: 8th International Conference on Music Information Retrieval ISMIR (2007)

  56. Lehmberg, L.J., Fung, C.V.: Benefits of music participation for senior citizens: a review of the literature. Music Educ. Res. Int. 4(2010), 19–30 (2010)

    Google Scholar 

  57. Li T., Ogihara M.: Content-based music similarity search and emotion detection. In: ICASSP, pp. 705–708 (1988). https://doi.org/10.1109/ICASSP.2004.1327208

  58. Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-Based Emotion Recognition in Music Listening. IEEE Trans. Biomed. Eng. 57(2010), 1798–1806 (2010). https://doi.org/10.1109/TBME.2010.2048568

    Article  Google Scholar 

  59. Liu Y., Yan N., Hu D.: Chorlody: a music learning game. In: CHI Extended Abstracts on Human Factors in Computing Systems, pp. 277–280 (2014). https://doi.org/10.1145/2559206.2580098

  60. Liu, Y.J., Yu, M., Zhao, G., Song, J., Ge, Y., Shi, Y.: Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans. Affect. Comput. 9(4), 550–562 (2018). https://doi.org/10.1109/TAFFC.2017.2660485

    Article  Google Scholar 

  61. Losorelli S., Nguyen D.C., Dmochowski J.P., Kaneshiro B.: NMED-T: a tempo-focused dataset of cortical and behavioral responses to naturalistic music. In: 18th International Society for Music Information Retrieval Conference, pp. 339–346 (2017). https://doi.org/10.5281/zenodo.1417917

  62. Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F.: A review of classification algorithms for EEG-based brain–computer interfaces: a 10-year update. J. Neural Eng. 15(3), 2018 (2018). https://doi.org/10.1088/1741-2552/aab2f2

    Article  Google Scholar 

  63. Lu, L., Liu, D., Zhang, H.J.: Automatic Mood Detection and Tracking of Music Audio Signals. IEEE Trans. Audio Speech Lang. Process. 14(2006), 5–18 (2005). https://doi.org/10.1109/TSA.2005.860344

    Article  Google Scholar 

  64. Luo, S., Yu, Y., Liu, S., Qiao, H., Liu, Y., Feng, L.: Deep attention-based music genre classification. Neurocomputing 372(2020), 84–91 (2020). https://doi.org/10.1016/j.neucom.2019.09.054

    Article  Google Scholar 

  65. Ma K., Wang X., Yang X., Zhang M., Girard J.M., Morency L.P.: ElderReact: a multimodal dataset for recognizing emotional response in aging adults. In: 2019 International Conference on Multimodal Interaction, ICMI, pp. 349–357 (2019). https://doi.org/10.1145/3340555.3353747

  66. Mandel, M.I., Ellis, D.P.: A web-based game for collecting music metadata. J. New Music Res. 37, 365–366 (2007). https://doi.org/10.1080/09298210802479300

    Article  Google Scholar 

  67. McCraty, R., Barrios-Choplin, B., Atkinson, M., Tomasino, D.: The effects of different types of music on mood, tension, and mental clarity. Altern. Ther. Health Med. 4(1), 75–84 (1998)

    Google Scholar 

  68. McKeown, G., Valstar, M., Cowie, R., Pantic, M., Schroder, M.: The SEMAINE database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans. Affect. Comput. 3(1), 5–17 (2012). https://doi.org/10.1109/T-AFFC.2011.20

    Article  Google Scholar 

  69. Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. MIT Press, Cambridge (1974)

    Google Scholar 

  70. Miranda, J., Abadi, M.K., Nicu, S., Patras, I.: AMIGOS: a dataset for mood, personality and affect research on individuals and groups. IEEE Trans. Affect. Comput. 2017, 1–14 (2017). https://doi.org/10.1109/TAFFC.2018.2884461

    Article  Google Scholar 

  71. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biomed. 20(3), 45–50 (2001)

    Article  Google Scholar 

  72. Murthy, Y.V.S., Koolagudi, S.G.: Content-based music information retrieval (CB-MIR) and its applications towards the music industry: a review. ACM Comput. Surv. 51(3), 1–46 (2018)

    Article  Google Scholar 

  73. Naji, M., Firoozabadi, M., Azadfallah, P.: Classification of music-induced emotions based on information fusion of forehead biosignals and electrocardiogram. Cognit. Comput. 6(2), 241–252 (2013). https://doi.org/10.1007/s12559-013-9239-7

    Article  Google Scholar 

  74. Naji, M., Firoozabadi, M., Azadfallah, P.: Emotion classification during music listening from forehead biosignals. Signal Image Video Process. 9(6), 1365–1375 (2015). https://doi.org/10.1007/s11760-013-0591-6

    Article  Google Scholar 

  75. Nasehi, S., Pourghassem, H.: An optimal EEG-based emotion recognition algorithm using Gabor features. WSEAS Trans. Signal Process. 8, 87–99 (2012)

    Google Scholar 

  76. Naser, D.S., Saha, G.: Recognition of emotions induced by music videos using DT-CWPT. Indian Conf. Med. Inf. Telemed. (ICMIT) (2013). https://doi.org/10.1109/IndianCMIT.2013.6529408

    Article  Google Scholar 

  77. Nasoz, F., Lisetti, C.L., Alvarez, K., Finkelstein, N.: Emotion recognition from physiological signals for user modelling of affect. Cognit. Technol. Work 6(1), 4–14 (2003). https://doi.org/10.1007/s10111-003-0143-x

    Article  Google Scholar 

  78. North, A.C., Hargreaves, D.J.: (2009) Music and consumer behavior. In: Hallam, S., Cross, I., Thaut, M. (eds.) The Oxford Handbook of Music Psychology, pp. 481–490. Oxford University Press, Oxford (2009)

    Google Scholar 

  79. Oh S., Hahn M., Kim J.: Music mood classification using intro and refrain parts of lyrics. In: 2013 International Conference on Information Science and Applications (ICISA), pp. 1–3 (2013). https://doi.org/10.1109/ICISA.2013.6579495

  80. Pandey P., Seeja K.R.: Subject-independent emotion detection from EEG signals using deep neural network. In: Proceedings of ICICC 2018, Vol. 2, pp. 41–46 (2018). https://doi.org/10.1007/978-981-13-2354-6_5

  81. Park, H.S., Yoo, J.O., Cho, S.B.: A Context-aware music recommendation system using fuzzy Bayesian networks with utility theory. In: Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science, vol. 4223. Springer, New York (2006). https://doi.org/10.1007/11881599_121

    Chapter  Google Scholar 

  82. Paul, D.J., Kundu, S.: A survey of music recommendation systems with a proposed music recommendation system. In: Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, vol. 937. Springer, New York (2020). https://doi.org/10.1007/978-981-13-7403-6_26

    Chapter  Google Scholar 

  83. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossing. IEEE Trans. Inf Technol. Biomed. 14(2010), 186–197 (2009). https://doi.org/10.1109/TITB.2009.2034649

    Article  Google Scholar 

  84. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossing analysis. IEEE Trans. Affect. Comput. 1(2010), 81–97 (2010). https://doi.org/10.1109/T-AFFC.2010.7

    Article  Google Scholar 

  85. Plutchik, R.: The Nature of Emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001)

    Article  Google Scholar 

  86. Russell, J.A.: Culture and the categorization of emotions. Psychol. Bull. 110(3), 425–450 (1991)

    Article  Google Scholar 

  87. Ruvolo P., Fasel I., Movellan J.: Auditory mood detection for social and educational robots. In: 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA (2008). https://doi.org/10.1109/ROBOT.2008.4543754

  88. Scaringella, N., Zoia, G., Mlynek, D.: Automatic genre classification of music content: a survey. IEEE Signal Process. Mag. 23(2), 133–141 (2006)

    Article  Google Scholar 

  89. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  90. Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X., Yang, X.: A review of emotion recognition using physiological signals. Sensors 18, 2074 (2018). https://doi.org/10.3390/s18072074

    Article  Google Scholar 

  91. Shuman, V., Schlegel, K., Scherer, K.: Geneva Emotion Wheel rating study (Report). Swiss Centre for Affective Sciences, Geneva (2015)

    Google Scholar 

  92. Silverman, M.J.: Effects of live music in oncology waiting rooms: two mixed methods pilot studies. Int. J. Music Perform. Arts 3(1), 1–15 (2015)

    Article  Google Scholar 

  93. Skowronek J., McKinney M.F., Par S.V.: Ground truth for automatic music mood classification. In: Proceedings of the International Conference on Music Information Retrieval, pp. 395–396 (2006)

  94. Snyder D., Chen G., & Povey D.: MUSAN: A Music, Speech, and Noise Corpus. ArXiv, abs/1510.08484 (2015)

  95. Soleymani M., Asghari-Esfeden S., Pantic M., Fu Y. Continuous emotion detection using EEG signals and facial expressions. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2014). https://doi.org/10.1109/ICME.2014.6890301

  96. Soleymani M., Caro M.N., Schmidt E.M., Sha C.Y., Yang YH.: 1000 songs for emotional analysis of music. In: 2nd ACM international workshop on Crowdsourcing for multimedia (CrowdMM'13). ACM, pp. 1–6 (2013). https://doi.org/10.1145/2506364.2506365

  97. Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012). https://doi.org/10.1109/T-AFFC.2011.25

    Article  Google Scholar 

  98. Song Y., Dixon S., Pearce M.T.: A survey of music recommendation systems and future perspectives. In: 9th International Symposium on Computer Music Modeling and Retrieval (CMMR’12) (2012)

  99. Sourina O., Liu Y.: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model. BIOSIGNALS. In: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pp. 209–214 (2011)

  100. Sourina, O., Wang, Q., Liu, Y., Nguyen, M.K.: A real-time fractal-based brain state recognition from EEG and its applications. In: International Joint Conference on Biomedical Engineering Systems and Technologies BIOSTEC, pp. 258–272 (2011)

  101. Stober S., Sternin A., Owen A.M., Grahn J.A.: Deep Feature Learning for EEG Recordings. ArXiv, abs/1511.04306 (2015)

  102. Subramanian, R., Wache, J., Abadi, M.K., Vieriu, R.L., Winkler, S., Sebe, N.: ASCERTAIN: emotion and personality recognition using commercial sensors. IEEE Trans. Affect. Comput. 9(2), 147–160 (2018). https://doi.org/10.1109/TAFFC.2016.2625250

    Article  Google Scholar 

  103. Takahashi K.: Remarks on emotion recognition from bio-potential signals. In: 2nd International Conference on Autonomous Robots and Agents, pp. 186–191 (2004)

  104. Thaut, M.H.: Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications. Routledge, New York (2005).. (ISBN 0415973708)

    Google Scholar 

  105. Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, P. The million song dataset. In: 12th International Society for Music Information Retrieval Conference ISMIR, pp. 591–596 (2011)

  106. Tseng K.C., Lin B.S., Han C.M., Wang P.S. Emotion recognition of EEG underlying favourite music by support vector machine. In: 1st International Conference on Orange Technologies (ICOT), pp. 155–158 (2013). https://doi.org/10.1109/ICOT.2013.6521181

  107. Turnbull D., Liu R., Barrington L., Lanckriet, G.R. A game-based approach for collecting semantic annotations of music. In: International Society on Music Information Retrieval ISMIR, pp. 535–538 (2007)

  108. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293–302 (2002)

    Article  Google Scholar 

  109. Van Der Zwaag, M.D., Dijksterhuis, C., De Waard, D., Mulder, B.L.J.M., Westerink, J.H.D.M., Brookhuis, K.A.: The influence of music on mood and performance while driving. Ergonomics 55(1), 12–22 (2012). https://doi.org/10.1080/00140139.2011.638403

    Article  Google Scholar 

  110. Vijayan A.E., Sen D., Sudheer A.P.: EEG-based emotion recognition using statistical measures and auto-regressive modelling. In: IEEE International Conference on Computational Intelligence & Communication Technology, pp. 587–591 (2015). https://doi.org/10.1109/CICT.2015.24

  111. Wagner J., Kim J., Andre E.: From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: 2005 IEEE International Conference on Multimedia and Expo, pp. 940–943 (2005)

  112. Weihs C., Ligges U., Mörchen F., Müllensiefen D.: Classification in music research. Adv. Data Anal. Classification, 1(3): 255–291 (2007). 1111 S. (2013). Using Physiological Signals for Emotion Recognition. In: 6th International Conference on Human System Interactions. 2013: 556–561. DOI: https://doi.org/10.1109/HSI.2013.6577880

  113. Yang, Y., Chen, H.H.: Machine recognition of music emotion: a review. ACM Trans. Intell. Syst. Technol. (TIST) 3(3), 40:1-40:30 (2012). https://doi.org/10.1145/2168752.2168754

    Article  Google Scholar 

  114. Yang, Y., Lin, Y., Su, Y., Chen, H.H.: A regression approach to music emotion recognition. IEEE Trans. Audio Speech Lang. Process. 16(2), 448–457 (2008). https://doi.org/10.1109/TASL.2007.911513

    Article  Google Scholar 

  115. Yang Y., Liu C.C., Chen H.H.: Music emotion classification: a fuzzy approach. In: Proceedings of the ACM International Conference on Multimedia, pp. 81–84 (2006). https://doi.org/10.1145/1180639.1180665

  116. Yıldırım, Ö., Baloglu, U.B., Acharya, U.R.: A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3889-z

    Article  Google Scholar 

  117. Zheng, W., Lu, B.: A Multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural Eng. 14(2), 026017 (2016). https://doi.org/10.1088/1741-2552/aa5a98

    Article  Google Scholar 

  118. Zheng, W., Lu, B.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Mental Dev. 7(3), 162–175 (2015). https://doi.org/10.1109/TAMD.2015.2431497

    Article  Google Scholar 

  119. Zheng, W., Zhu, J., Lu, B.: Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. 10(3), 417–429 (2016). https://doi.org/10.1109/TAFFC.2017.2712143

    Article  Google Scholar 

  120. Zong C., Chetouani M.: Hilbert-Huang transform based physiological signals analysis for emotion recognition. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 334–339 (2009). https://doi.org/10.1109/ISSPIT.2009.5407547

  121. Thayer, R.E.: The Biopsychology of Mood and Arousal. Oxford University Press, New York (1989).. (ISBN0-19-506827-0)

    Google Scholar 

  122. Fontaine, J.R.J., Scherer, K.R., Roesch, E.B., Ellsworth, P.C.: The world of emotions is not two-dimensional. Psychol. Sci. 18(12), 1050–1057 (2007). https://doi.org/10.1111/j.1467-9280.2007.02024.x

    Article  Google Scholar 

  123. Stober S., Sternin A., Owen A.M., & Grahn, J.A.: Towards Music Imagery Information Retrieval: Introducing the OpenMIIR Dataset of EEG Recordings from Music Perception and Imagination. In: 16th International Society for Music Information Retrieval Conference, pp. 763–769 (2015). https://doi.org/10.5281/zenodo.1416270

  124. Alakuş, T.B., Türkoglu, I.: Feature selection with sequential forward selection algorithm from emotion estimation based on EEG signals. Sakarya Univ. J. Sci. 23(6), 1096–1105 (2019). https://doi.org/10.16984/saufenbilder.501799

    Article  Google Scholar 

  125. Hosseini, M., Hosseini, A., Ahi, K.: A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. (2020). https://doi.org/10.1109/RBME.2020.2969915

    Article  Google Scholar 

  126. Zhang, K., Zhang, H.B., Li, S., Yang, C., Sun, L.: The PMEmo dataset for music emotion recognition. Int. Conf. Multimed. Retrieval. (2018). https://doi.org/10.1145/3206025.3206037

    Article  Google Scholar 

  127. Warrenburg, L.A.: Choosing the right tune: a review of music stimuli used in emotion research. Music Perception Interdiscip. J. 37(3), 240–258 (2020). https://doi.org/10.1525/mp.2020.37.3.240

    Article  Google Scholar 

  128. Su, K., Hairston, W., Robbins, K.: EEG-annotate: automated identification and labeling of events in continuous signals with applications to EEG. J. Neurosci. Methods 293, 359–374 (2018)

    Article  Google Scholar 

  129. Amin, H.U., Mumtaz, W., Subhani, A., Saad, M., & Malik, A.: Classification of EEG signals based on pattern recognition approach. Front. Comput. Neurosci. 11, 103 (2017). https://doi.org/10.3389/fncom.2017.00103. eCollection 2017

  130. Delorme, A., Makeig, S.: EEGLAB: an open-source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  131. Ghosh, A., Danieli, M., & Riccardi, G.: Annotation and prediction of stress and workload from physiological and inertial signals. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1621–1624 (2015)

  132. Wu, S., Xu, X., Shu, L., Hu, B.: Estimation of valence of emotion using two frontal EEG channels. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, MO, USA, 13–16 November 2017; pp. 1127–1130 (2017)

  133. Lan, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 32, 347–358 (2016)

    Article  Google Scholar 

  134. Dror, O.E.: The cannon-bard thalamic theory of emotions: a brief genealogy and reappraisal. Emot. Rev. 6(1), 13–20 (2014). https://doi.org/10.1177/1754073913494898

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Kumar.

Additional information

Communicated by I. Bartolini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, V., Kaur, A.B., Varshney, V. et al. Music mood and human emotion recognition based on physiological signals: a systematic review. Multimedia Systems 28, 21–44 (2022). https://doi.org/10.1007/s00530-021-00786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00786-6

Keywords

Navigation