Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Color image quantization with peak-picking and color space

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Color image quantization is a significant procedure of reducing the huge range of color values of a digital color image into a limited range. In this paper, an automated clustering of pixels and color quantization algorithm is proposed. The ideal number of representative colors is unknown beforehand in most color quantization algorithms. This is an important handicap in most practical cases. The proposed color quantization approach (PPCS) is able to automatically estimate an appropriate number of colors in a quantized palette. Hence, PPCS requires no number of representative colors to be set in advance. This algorithm has two main steps to follow: color palette design and pixel mapping. The color palette is generated by the combination of the entire peaks of all color component histograms. Such that, all color component histogram was smoothed in order to remove unreliable peaks. Next, unreliable colors will be removed from the palette. Then, each pixel in the image will be assigned to the cluster (unit color in the palette) which has the least Euclidean distance. To evaluate the ability of the PPCS, 22 images from Berkeley segmentation dataset have been randomly selected and tested with PPCS and also by two well-known quantization algorithms. The numerical evaluations have been carried out by using computation time, PSNR, MSE, and SSIM performance criteria. Both visual and numerical evaluations reveal that the proposed method presents promising quantization results. Such that, PPCS is ranked first, second, first and first according to PSNR, MSE, SSIM and computation time, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilhelm, B., Mark, J.B.: Principles of digital image processing: core algorithms. Springer, London (2009)

    MATH  Google Scholar 

  2. Burger, W., Burge, M.J.: Principles of digital image processing: fundamental techniques. Springer Science & Business Media, Berlin (2010)

    MATH  Google Scholar 

  3. Yan C, Shao B, Zhao H, Ning R, Zhang Y, Xu F (2020) 3d room layout estimation from a single rgb image. IEEE Trans. Multimed.

  4. Yan C, Gong B, Wei Y, Gao Y (2020) Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern. Anal. Mach. Intell.

  5. Yue, X.D., Miao, D.Q., Cao, L.B., Wu, Q., Chen, Y.F.: An efficient color quantization based on generic roughness measure. Pattern Recognit. 47(4), 1777–1789 (2014). https://doi.org/10.1016/j.patcog.2013.11.017

    Article  MATH  Google Scholar 

  6. Heckbert, P.: Color image quantization for frame buffer display. SIGGRAPH Comput. Graph 16(3), 297–307 (1982). https://doi.org/10.1145/965145.801294

    Article  Google Scholar 

  7. Joy, G., Xiang, Z.: Center-cut for color-image quantization. Vis. Comput. 10(1), 62–66 (1993). https://doi.org/10.1007/BF01905532

    Article  Google Scholar 

  8. Balasubramanian, R., Allebach, J.P., Bouman, C.A.: Color-image quantization with use of a fast binary splitting technique. J Opt Soc Am A 11(11), 2777–2786 (1994). https://doi.org/10.1364/JOSAA.11.002777

    Article  Google Scholar 

  9. Clark, D.: The popularity algorithm. Dr Dobb’s J. 121–127 (1995)

  10. Wan, S.J., Wong, S.K.M., Prusinkiewicz, P.: An algorithm for multidimensional data clustering. ACM Trans. Math. Softw. 14(2), 153–162 (1988). https://doi.org/10.1145/45054.45056

    Article  Google Scholar 

  11. Gervautz, M., Purgathofer, W.: A simple method for color quantization: Octree quantization. In: New trends in computer graphics. Springer, Berlin, pp 219–231 (1988)

  12. Yang, C.-Y., Lin, J.-C.: RWM-cut for color image quantization. Comput. Graph. 20(4), 577–588 (1996). https://doi.org/10.1016/0097-8493(96)00028-3

    Article  Google Scholar 

  13. Yang, C.-K., Tsai, W.-H.: Color image compression using quantization, thresholding, and edge detection techniques all based on the moment-preserving principle. Pattern Recognit. Lett. 19(2), 205–215 (1998). https://doi.org/10.1016/S0167-8655(97)00166-9

    Article  MathSciNet  Google Scholar 

  14. Cheng, S.-C., Yang, C.-K.: A fast and novel technique for color quantization using reduction of color space dimensionality. Pattern Recognit. Lett. 22(8), 845–856 (2001). https://doi.org/10.1016/S0167-8655(01)00025-3

    Article  MATH  Google Scholar 

  15. Tou, J., Gonzalez, R.: Pattern Recognition Principles, p. 377. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  16. Shafer S, Kanade T (1987) Color vision. In: Encyclopedia of artificial intelligence, pp 124–131

  17. Celenk, M.: A color clustering technique for image segmentation. Comput. Vis. Graph. Image Process. 52(2), 145–170 (1990). https://doi.org/10.1016/0734-189X(90)90052-W

    Article  Google Scholar 

  18. Goldberg, N.: Colour image quantization for high resolution graphics display. Image Vis. Comput. 9(5), 303–312 (1991). https://doi.org/10.1016/0262-8856(91)90035-N

    Article  Google Scholar 

  19. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1), 84–95 (1980). https://doi.org/10.1109/TCOM.1980.1094577

    Article  Google Scholar 

  20. Xiang, Z., Joy, G.: Color image quantization by agglomerative clustering. IEEE Comput. Graph. Appl. 3, 44–48 (1994)

    Article  Google Scholar 

  21. Velho, L., Gomes, J., Sobreiro, M.V.R.: Color image quantization by pairwise clustering. Proc. X Braz. Symp. Comput. Graph. Image Process. 14–17(1997), 203–210 (1997). https://doi.org/10.1109/SIGRA.1997.625178

    Article  Google Scholar 

  22. Xiang, Z.: Color image quantization by minimizing the maximum intercluster distance. ACM Trans. Graph 16(3), 260–276 (1997). https://doi.org/10.1145/256157.256159

    Article  Google Scholar 

  23. Hsieh, I.-S., Fan, K.-C.: An adaptive clustering algorithm for color quantization. Pattern Recognit. Lett. 21(4), 337–346 (2000). https://doi.org/10.1016/S0167-8655(99)00165-8

    Article  Google Scholar 

  24. Patané, G., Russo, M.: The enhanced LBG algorithm. Neural Netw. 14(9), 1219–1237 (2001). https://doi.org/10.1016/S0893-6080(01)00104-6

    Article  Google Scholar 

  25. Verevka O (1995) The local k-means algorithm for colour image quantization

  26. Kasuga, H., Yamamoto, H., Okamoto, M.: Color quantization using the fast K-means algorithm. Syst. Comput. Japan 31(8), 33–40 (2000)

    Article  Google Scholar 

  27. Hu, Y., Su, B.: Accelerated k-means clustering algorithm for colour image quantization. Imaging Sci. J 56(1), 29–40 (2008)

    Article  MathSciNet  Google Scholar 

  28. Celebi, M.E.: An effective color quantization method based on the competitive learning paradigm. In: IPCV. Citeseer, pp 876–880 (2009)

  29. Celebi, M.E.: Improving the performance of k-means for color quantization. Image Vis. Comput. 29(4), 260–271 (2011). https://doi.org/10.1016/j.imavis.2010.10.002

    Article  Google Scholar 

  30. Özdemir, D., Akarun, L.: A fuzzy algorithm for color quantization of images. Pattern Recognit. 35(8), 1785–1791 (2002). https://doi.org/10.1016/S0031-3203(01)00170-4

    Article  MATH  Google Scholar 

  31. Schaefer, G., Zhou, H.: Fuzzy clustering for colour reduction in images. Telecommun. Syst. 40(1), 17 (2008). https://doi.org/10.1007/s11235-008-9143-8

    Article  Google Scholar 

  32. Wen, Q., Celebi, M.E.: Hard versus fuzzy c-means clustering for color quantization. EURASIP J. Adv. Signal Process. 1, 118 (2011). https://doi.org/10.1186/1687-6180-2011-118

    Article  Google Scholar 

  33. Rahkar Farshi, T., Demirci, R., Feizi-Derakhshi, M.-R.: Image clustering with optimization algorithms and color space. Entropy 20(4), 296 (2018)

    Article  Google Scholar 

  34. Rahkar Farshi, T., Drake, J.H., Özcan, E.: A multimodal particle swarm optimization-based approach for image segmentation. Expert Syst. Appl. 149, 113233 (2020)

    Article  Google Scholar 

  35. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001, 7–14 July 2001, vol 412, pp 416–423 (2001). https://doi.org/10.1109/ICCV.2001.937655

  36. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taymaz Rahkar Farshi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahkar Farshi, T. Color image quantization with peak-picking and color space. Multimedia Systems 26, 703–714 (2020). https://doi.org/10.1007/s00530-020-00682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00682-5

Keywords

Navigation