Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A general framework for managing and processing live video data with privacy protection

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Though a large body of existing work on video surveillance focuses on image and video processing techniques, few address the usability of such systems, and in particular privacy issues. This study fuses concepts from stream processing and content-based image retrieval to construct a privacy-preserving framework for rapid development and deployment of video surveillance applications. Privacy policies, instantiated to as privacy filters, may be applied both granularly and hierarchically. Privacy filters are granular as they are applicable to specific objects appearing in the video streams. They are hierarchal because they can be specified at specific objects in the framework (e.g., users, cameras) and are combined such that the disseminated video stream adheres to the most stringent aspect specified in the cascade of all privacy filters relevant to a video stream or query. To support this privacy framework, we extend our Live Video Database Model with an informatics-based approach to object recognition and tracking and add an intrinsic privacy model that provides a level of privacy protection not previously available for real-time streaming video data. The proposed framework also provides a formal approach to implement and enforce privacy policies that are verifiable, an important step towards privacy certification of video surveillance systems through a standardized privacy specification language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Adali, S., Candan, K.S., Chen, S., Erol, K., Subrahmanian, V.S.: Advanced video information systems: data structures and query processing. ACM Multimedia Syst. 4, 172–186 (1996)

    Article  Google Scholar 

  2. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21(4), 515–556 (1989)

    Article  Google Scholar 

  3. Ahmedali, T., Clark, J.J.: Collaborative multi-camera surveillance with automated person detection. Paper presented at the Canadian conference on computer and robot vision (2006)

  4. Benjamin C.M.F, Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), Article 14 (June 2010)

  5. Caloyannides, M.A.: Society cannot function without privacy. IEEE Secur. Priv. 1(3), 84–86 (2003)

    Google Scholar 

  6. Chen, X., Zhang, C., Chen, S., Chen, M.: A latent semantic indexing based method for solving multiple instance learning problem in region-based image retrieval. Seventh IEEE Int. Symp. Multimedia 4(8), 12–14 (2005)

    Google Scholar 

  7. Cheng, H., Hua, K.A., Yu, N.: An automatic feature generation approach to multiple instance learning and its applications to image databases. Multimedia Tools Appl. (Springer) (2009)

  8. Cynthia, D.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) Proceedings of the 5th International Conference on Theory and Applications of Models of Computation (TAMC’08), pp. 1–19. Springer-Verlag, Berlin, Heidelberg (2008)

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR 2005 (2005)

  10. Danielson, P.: Video surveillance for the rest of us: proliferation, privacy, and ethics education. Int. Symp. Technol. Soc. 1(1), 162–167 (2002)

    Google Scholar 

  11. Dixon, M., Jacobs, N., Pless, R.: An efficient system for vehicle tracking in multi-camera networks. In: Proceedings of the ICDSC 2009 (2009)

  12. Donderler, M.E., Ulusoy, O., Gudukbay, U.: A rulebased video database system architecture. Inf. Sci. 143(1–4), 13–45 (2002)

    Article  Google Scholar 

  13. Donderler, M.E., Saykol, E., Ulusoy, O., Gudukbay, U.: BilVideo: a video database management system. IEEE Multimedia 1(10), 66–70 (2003)

    Google Scholar 

  14. Du, W., Piater, J.: Multi-camera people tracking by collaborative particle filters and principal axis-based integration. In: Asian Conference on Computer Vision, Hyderabad (2007)

  15. Dufaux, F., Ebrahimi, T.: Scrambling for privacy protection in video surveillance systems. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1168–1174 (2008)

    Article  MATH  Google Scholar 

  16. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., et al.: Query by image and video content: the QBIC system. IEEE Comput. 28, 23–32 (1995)

    Article  Google Scholar 

  17. Guting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., et al.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)

    Article  Google Scholar 

  18. Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., et al.: Smart video surveillance, exploring the concept of multi-scale spatiotemporal tracking. IEEE Signal Process. Mag. 22, 38–51 (2005)

    Article  Google Scholar 

  19. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory. IT-8, 179–187 (1962)

    Google Scholar 

  20. Hua, K.A., Yu, N., Liu, D.: Query decomposition: a multiple neighborhood approach to relevance feedback processing in content-based image retrieval. In: Proceedings of the 22nd International Conference on Data Engineering (2006)

  21. Javed, O., Rasheed, Z., Shah M.: Tracking across multiple cameras with disjoint views. In: The Ninth IEEE International Conference on Computer Vision (ICCV), Nice, (2003)

  22. Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views. Comput. Vis. Image Underst. 109(2), 146–162 (2008). doi:10.1016/j.cviu.2007.01.003

    Google Scholar 

  23. Kuo, T.C.T., Chen, A.L.P.: Content-based query processing for video databases. IEEE Trans. Multimedia 2(1), 1–13 (2000)

    Article  Google Scholar 

  24. Li, J.Z., Ozsu, M.T., Szafron, D., Oria, V.: MOQL: a multimedia object query language. In: Proceedings of the 3rd International Workshop on Multimedia Information Systems, pp. 19–28, Como (1997)

  25. Peng, R., Aved, A.J., Hua, K.A.: Real-time query processing on live videos in networks of distributed cameras. Int. J. Interdiscip. Telecommun. Netw. 2(1), 27–48 (2010)

    Article  Google Scholar 

  26. Saini, M., Atrey, P.K., Mehrotra, S., Emmanuel, S., Kankanhalli, M.: Privacy modeling for video data publication. 2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 60–65, 19–23 July 2010

  27. Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y., Ekin, A., Connell, J., Shu, C., Lu, M.: Enabling video privacy through computer vision. IEEE Secur. Priv. 3(3), 50–57 (2005)

    Article  Google Scholar 

  28. Song, B., Roy-Chowdhury, A.: Stochastic adaptive tracking in a camera network. In: IEEE International Conference on Computer Vision (2007)

  29. The London Evening Standard. Tens of thousands of CCTV cameras, yet 80% of crime unsolved. http://www.thisislondon.co.uk/news/article-23412867-tens-of-thousands-of-cctv-cameras-yet-80-of-crime-unsolved.do (2007)

  30. Tieu, K., Dalley, G., Grimson, W.E.L.: Inference of non-overlapping camera network topology by measuring statistical dependence. In: IEEE International Conference on Computer Vision (2005)

  31. Velipasalar, S., Brown, L.M., Hampapur, A.: Detection of user-defined, semantically high-level, composite events, and retrieval of event queries. Multimedia Tools Appl. 50(1), 249–278 (2010)

    Article  Google Scholar 

  32. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 4 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Aved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aved, A.J., Hua, K.A. A general framework for managing and processing live video data with privacy protection. Multimedia Systems 18, 123–143 (2012). https://doi.org/10.1007/s00530-011-0245-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-011-0245-x

Keywords

Navigation