Abstract
Skin detection is a difficult and primary task in many image processing applications. Because of the diversity of various image processing tasks, there exists no optimum method that can perform properly for all applications. In this paper, we have proposed a novel skin detection algorithm that combines color and texture information of skin with cellular learning automata to detect skin-like regions in color images. Skin color regions are first detected, by using a committee structure, from among several explicit boundary skin models. Detected skin-color regions are then fed to a texture analyzer which extracts texture features via their color statistical properties and maps them to a skin probability map. This map is then used by cellular learning automata to adaptively make a decision on skin regions. Conducted experiments show that the proposed algorithm achieves the true positive rate of about 86.3% and the false positive rate of about 9.2% on Compaq skin database which shows its efficiency.
Similar content being viewed by others
References
Wang, D., Ren, J., Jiang, J., Ipson, S.S.: Skin detection from different color spaces for model-based face detection. Advanced Intelligent Computing Theories and Applications with Aspects of Contemporary Intelligent Computing Techniques, vol. 15, part 14, pp. 487–494. Springer, Berlin (2008)
Huang, F.J., Chen, T.: Tracking of multiple faces for human- computer interfaces and virtual environments. In: Proc. IEEE Int. Conf. Multimedia and Expo, New York, pp. 1563–1566 (2000)
Ho, W., Watters, P.: Statistical and structural approaches to filtering internet pornography. In: Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 4792–4798 (2004)
Sebe N., Cohen I., Gozman F.G., Gevers T., Huang T.S.: Learning probabilistic classifiers for human-computer interaction applications. Multimed. Syst. Special Issue Syst. Archit. Multimed. Inf. Retr. 10(6), 484–498 (2005)
Park, S., Aggarwal, J.K.: A hierarchical Bayesian network for event recognition of human actions and interactions. In: ACM Multimedia Systems Journal, Special Issue on Video Surveillance, pp. 164–179 (2004)
Yang B., Hurson A.R.: Similarity-based clustering strategy for mobile ad hoc multimedia databases. Mobile Inf. Syst. 1(4), 253–273 (2005)
Available online at http://www.idigitalemotion.com/tutorials/guest/skin_tone/skintone.html
Shin, M.C., Chang, K., TSAP L.V.: Does color space transformation make any difference on skin detection? In: Proc. IEEE Workshop on Applications of Computer, USA, pp. 275–279 (2002)
Albiol A., Torres L., Delp E.J.: Optimum color space for skin detection. Int. Conf. Image Process. (ICIP) 1, 122–124 (2001)
Pung S.P., Bouzerdoum A., Chai D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)
Vezhnevets, V., Andreeva, A.: A comparative assessment of pixel-based skin detection methods. Technical report, Graphics and Media Laboratory, Moscow State University (2005)
Kakumanu P., Makrogiannis S., Bourbakis N.: A survey of skin-color modeling and detection methods. J. Pattern Recognit. 40, 1106–1122 (2007)
Vezhnevets, V., Sazonov, V., Andreeva, A.: A survey on pixel-based skin color detection techniques. GRAPHICON03, pp. 85–92 (2003)
Abin, A.A., Fotouhi, M., Kasaei, S.: Skin segmentation based on cellular learning automata. In: Proc. Advances in Mobile Computing and Multimedia, Linz, Austria, pp. 254–259 (2008)
Beigy H., Meybodi M.R.: Asynchronous cellular learning automata. J. Auomatica 44(4), 1350–1357 (2008)
Meybodi, M.R., Khojasteh, M.R.: Application of cellular learning automata in modeling of commerce networks. In: Proc. 6th Annual International Computer Society of Iran Computer Conference (CSICC). Isfahan, Iran, pp. 284–295 (2001)
Dommen B.J., Croix D.S.: Graph partitioning using learning automata. IEEE Trans. Comput. 45, 195–208 (1996)
Dommen B.J., Roberts T.D.: Continuous learning automata solutions to the capacity assignment problem. IEEE Trans. Comput. 49, 608–620 (2000)
Meybodi M.R., Beigy H.: A note on learning automata-based schemes for adaptation of BP parameters. J. Neurocomputing 48, 957–974 (2002)
Gomez, G., Morales, E.: Automatic feature construction and a simple rule induction algorithm for skin detection. In: Proc. of the ICML Workshop on Machine Learning in Computer Vision, pp. 31–38 (2002)
Littmann E., Ritter H.: Adaptive color segmentation: a comparison of neural and statistical methods. IEEE Trans. Neural Netw. 8(1), 175–185 (1997)
Phung S.L., Bouzerdoum A., Chai D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)
Dai Y., Nakano Y.: Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognit. 29(6), 1007–1017 (1996)
Zhanwu, X., Miaoliang, Z.: Color-based skin detection survey and evaluation. In: Proc. 12th International Multi-Media Modeling Conference (MMM ‘06), pp. 143–152 (2006)
Jones M., Rehg J.: Statistical color models with application to skin color detection. Proc. Int. J. Comput. Vis. 46, 81–96 (2002)
Yang J., Lu A., Waibel W.: Skin-color modeling and adaptation. ACCV98 Hong Kong. China 1352, 687–694 (1998)
Wang Y., Yuan B.: A novel approach for human face detection from color images under complex background. Pattern Recognit. 34(10), 1983–1992 (2001)
Sobottka K., Pitas I.: A novel method for automatic face segmentation, facial feature extraction and tracking. Signal Process. Image Commun. 12, 263–281 (1998)
Kovac J., Peer P., Solina F.: Human skin color clustering for face detection. Proc. Int. Conf. Comput. Tool 2, 144–148 (2003)
Chai D., Ngan K.N.: Face segmentation using skin-color map in videophone applications. IEEE Trans. Circuits Syst. Video Technol. 9(4), 518–521 (1999)
Brown, D., Craw, I., Lewthwaite, J.: A SOM based approach to skin detection with application in real time systems. In: Proc. British Machine Vision Conference, pp. 491–500 (2001)
Sigal L., Sclaroff S., Athitsos V.: Estimation and prediction of evolving color distributions for skin segmentation under varying illumination. IEEE Conf. Comput. Vision Pattern Recognit. 2, 152–159 (2000)
Soriano, M., Huovinen, S., Martinkauppi, B., Laaksonen, M.: Skin detection in video under changing illumination conditions. In: Proc. 15th International Conference on Pattern Recognition, vol. 1, pp. 839–842 (2000)
Yoo T.W., Oh I.S.: A fast algorithm for tracking human faces based on chromatic histograms. Pattern Recognit. Lett. 20(10), 967–978 (1999)
Chai D., Bouzerdoum A.: A Bayesian approach to skin color classification in ycbcr color space. IEEE Region Ten Conf. 2, 421–424 (2000)
Menser, B., Wien, M.: Segmentation and tracking of facial regions in color image sequences. In: Proc. SPIE Visual Communications and Image Processing, pp. 731–740 (2000)
Kuchi P., Gabbur P., Bhat S., David S.: Human face detection and tracking using skin color modeling and connected component operators. IETE J. Res. Special Issue Visual Media Process. 48(3–4), 289–293 (2002)
Terrillon JC, Shirazi MN, Fukamachi H, Akamatsu S (2000) Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. In: Proc. International Conference on Face and Gesture Recognition, pp. 54–61
Caetano, T.S., Olabarriaga, S.D., Barone, D.A.C.: Performance evaluation of single and multiple-Gaussian models for skin-color modeling. SIBGRAPI02, pp. 275–282 (2002)
Yang M., Ahuja N.: Gaussian mixture model for human skin color and its application in image and video databases. Proc. SPIE: Conf. Storage Retrieval Image Video Databases (SPIE 99) 3656, 458–466 (1999)
Guillamet, D., Vitria, J.: Skin segmentation using non linear principal component analysis. In: Proc. 2nd Catalan Congress on Artificial Intelligence (CCIA’99). Spain, pp. 224–231 (1999)
Lee, J.Y., Yoo, S.I.: An elliptical boundary model for skin color detection. In: Proc. Int. Conf. on Imaging Science, Systems, and Technology, pp. 579–584 (2002)
Jedynak B., Zheng H., Daoudi M.: Statistical models for skin detection. IEEE Worksh. Stat. Anal. Comput. Vis. 8, 92 (2003)
Phung S.L., Chai D., Bouzerdoum A.: A universal and robust human skin color model using neural networks. IJCNN01 4, 2844–2849 (2001)
Chen C., Chiang S.P.: Detection of human faces in colour images. IEE Proc. Vis. Image Signal Process 144(6), 384–388 (1997)
Sebe N., Cohen T., Huang T.S., Gevers T.: Skin detection, a Bayesian network approach. ICPR04 2, 903–906 (2004)
Juang C.F., Chiu S.H., Shiu S.J.: Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation. IEEE Trans. Syst. Man Cybernetics-Part A: Syst. Humans 37(6), 1077–1087 (2007)
Pujol, F.A., Espi, R., Mora, H., Sanchez, J.L.: A fuzzy approach to skin color detection. MICAI 2008: Advances in Artificial Intelligence, vol. 5317, pp. 532–542. Springer, Berlin (2008)
Diplaros A., Gevers T., Vlassis N.: Skin detection using the EM algorithm with spatial constraints. IEEE Int. Conf. Syst. Man Cybern. 4, 3071–3075 (2004)
Kruppa, H., Bauer, M.A., Schiele, B.: Skin patch detection in real-world images. Annual Symposium for Pattern Recognition of the DAGM. Springer LNCS 2449, vol. 109, pp. 109–116 (2002)
Forsyth D.A., Fleck M.: Automatic detection of human nudes. Int. J. Comput. Vis. 32(1), 63–77 (1999)
Xu, Y., Li, B., Xue, X., Lu, H.: Region-based pornographic image detection. In: IEEE 7th Workshop on Multimedia Signal Processing (MMSP’05). Shanghai, China, pp. 1–4 (2005)
Buchsbaum G.: A spatial processor model for object colour perception. J. Franklin Inst. 310, 1–26 (1990)
Forsyth D.: A novel approach to color constancy. J. Comput. Vis. 5(1), 5–36 (1990)
Brainard D.H., Freeman W.T.: Bayesian color constancy. J. Opt. Soc. Am. 14, 1393–1411 (1997)
Nayak A., Chaudhuri S.: Self-induced color correction for skin tracking under varying illumination. ICIP03 2, 1009–1012 (2003)
Strring M., Koèka T., Anderson H.J., Granum E.: Tracking regions of human skin through illumination changes. Pattern Recognit. Lett. 24(11), 1715–1723 (2003)
Sigal L., Sclaroff S., Atlitsos V.: Skin color-based video segmentation under time-varying illumination. IEEE Trans. PAMI 26(7), 862–877 (2004)
Barnard K., Funt B., Cardei V.: A comparison of computational color constancy algorithms-Part I: theory and experiments with synthetic data. IEEE Trans. Image Process 11(9), 972–984 (2002)
Barnard K., Martin L., Coath A., Funt B.: A comparison of computational color constancy algorithms-Part II: Experiments with image data. IEEE Trans. Image Process 11(9), 985–996 (2002)
Bergasa L.M., Mazo M., Gardel A., Sotelo M.A., Boquete L.: Unsupervised and adaptive Gaussian skin-color model. Image Vis. Comput. 18(12), 987–1003 (2000)
Cho K.M., Jang J.H., Hong K.S.: Adaptive skin-color filter. Pattern Recognit. 34(5), 1067–1073 (2001)
Frisch, A.S., Verschae, R., Olano, A.: Fuzzy fusion for skin detection, vol. 158, pp. 325–336. Elsevier, Science, Fuzzy Sets and Systems (2007)
Xiao, K., Danghui, L., Lansun, S.: Segmentation of skin color regions based on fuzzy cluster. In: Proc. International Symposium on Intelligent Multimedia, Video and Speech Processing Hong Kong, pp. 125–128 (2004)
George, D.F.J., George, S.E.: Cellular automata cryptography using reconfigurable computing Source. In: Proc. of the 16th International Conference on Developments in Applied Artificial Intelligence, pp. 104–111 (2003)
Mitchell, M.: Computation in cellular automata: a selected review. Technical report, Santa Fe Institute, Santa Fe, NM, USA (1996)
Packard N.H., Wolfram S.: Two-dimensional cellular automata. J. Stat. Phys. 38, 901–946 (1985)
Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica, pp. 379–385 (1990)
Tsetlin M.L.: On the behavior of finite automata in random media. Automat. Remote Control 22(10), 1210–1219 (1961)
Beigy H., Meybodi M.R.: A mathematical framework to study the evolution of cellular learning automata. Adv. Complex Syst. 7(3–4), 295–319 (2004)
Narendra K.S., Wright E.A., Mason L.G.: Application of learning automata to telephone traffic routing and control. IEEE Trans. Sys. Man. Cybern. 7(11), 785–792 (1977)
Oommen B.J.: A learning automata solution to the stochastic minimum-spanning circle problem. IEEE Trans. Syst. Man. Cybern. 16, 598–603 (1986)
Oommen B.J., Raghunath G.: Automata learning and intelligent tertiary searching for stochastic point location. IEEE. Trans. Syst. Man. Cybern. Part B. Cybern. 28(6), 947–954 (1998)
Thathachar M.A.L., Sastry P.S.: Learning optimal discriminant functions through a cooperative game of automata. IEEE Trans. Syst. Man. Cybern. 7(1), 73–85 (1987)
Meybodi M.R., Kharazmi M.R.: Application of cellular learning automata to image processing. J. Amirkabir 14(56), 1101–1126 (2004)
Beigy H., Meybodi M.R.: Open synchronous cellular learning automata. Adv. Complex Syst. 10(4), 527–556 (2007)
Kittler J., Hatef M., Duin R.P.W., Matas J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998)
Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice Hall PTR Upper Saddle River, NJ (1998)
Abadpour A., Kasaei S.: Pixel–based skin detection for pornography filtering. Iranian J. Electr. Electron. Eng. 1(3), 21–41 (2005)
Gasparini, F., Corchs, S., Schettini, R.: Pixel-based skin colour classification exploiting explicit skin cluster definition methods. In: Proc. 10th Congress of the International Colour Association, vol. 1, pp. 543–546 (2005)
Heieh I.S., Fan K.C., Lin C.: A statistical approach to the detection of human faces in colour nature scene. Pattern Recognit. 35, 1583–1596 (2002)
Brand, J., Mason, J.: A comparative assessment of three approaches to pixel level human skin detection. ICPR01, pp. 1056–1059 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was in part supported by a grant from Iran telecommunication research center (ITRC). We also would like to thank Dr. Beigy for his help on the theory and implementation of CLA.
Rights and permissions
About this article
Cite this article
Abin, A.A., Fotouhi, M. & Kasaei, S. A new dynamic cellular learning automata-based skin detector. Multimedia Systems 15, 309–323 (2009). https://doi.org/10.1007/s00530-009-0165-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-009-0165-1