Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique used to show anatomical structures and physiological processes of the human body. Due to limitations like image acquisition time, hardware capabilities, or uncooperative patients, the resolution of MR images is insufficient. Super-resolution (SR) is a crucial method to enhance the resolution of images without expensive scanning equipment. Recent years have witnessed significant progress in MR image super-resolution. Therefore, this survey presents a thorough overview of current developments in deep learning-based MR image super-resolution methods. In general, we can roughly divide the MRI super-resolution methods into single-contrast MR image SR methods and multi-contrast MR image SR methods. Additionally, we introduce the multi-task learning approaches about the MR image super-resolution. We also summarize other crucial topics, such as the degradation model, the definition of the super-resolution problem, the dataset, loss functions, and image quality assessment. Lastly, we indicate the challenges in the field of super-resolution and draw a conclusion to our survey.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Abbreviations
- HR:
-
Ground truth MR image
- SR:
-
Super-resolved MR image
- LR:
-
Low-resolution MR image
- Ref:
-
High-resolution reference image
- \(\mathcal {D}\) :
-
Degradation model
- \(\delta \) :
-
The parameter of the degradation model
- F :
-
Super-resolution model
- \(\theta \) :
-
The parameter of the super-resolution model
- n :
-
The number of images
- \(\epsilon \) :
-
Constant (1e−3)
- \(\nabla \) :
-
Gradient
- \(\phi \) :
-
The pre-trained network
- \(\phi _{j}(\cdot )\) :
-
The feature map of the jth layer of the network \(\phi \)
- p :
-
Feature map p
- q :
-
Feature map q
- \({\text {vec}}(\cdot )\) :
-
Vectorization operation
- G :
-
Generator network
- D :
-
Discriminator network
- \(\mu _{\text{SR}}\) :
-
Mean value of the image
- \(\sigma _{\text{SR}}\) :
-
Standard deviation of the image intensity
- \(\mathcal {C}_{\text{l}}\) :
-
Luminance
- \(\mathcal {C}_{\text{c}}\) :
-
Contrast
- \(\mathcal {C}_{\text{s}}\) :
-
Structure
- \(C_{1}\) :
-
Constant
- \(C_{2}\) :
-
Constant
- \(C_{3}\) :
-
Constant
- \(\sigma _{\text{SRHR}}\) :
-
The covariance between SR and HR
- \(\alpha \) :
-
Constant (1)
- \(\beta \) :
-
Constant (1)
- \(\gamma \) :
-
Constant (1)
- \(S_{\text{seg}}\) :
-
Predicted segmentation
- \(G_{\text{seg}}\) :
-
Real segmentation label
References
Ramírez VM, Pinon N, Forbes F, Lartizen C, Dojat M (2021) atch versus global image-based unsupervised anomaly detection in MR brain scans of early parkinsonian patients. In: Machine learning in clinical neuroimaging: 4th international workshop, MLCN 2021, vol. 13001, pp 34–43. https://doi.org/10.1007/978-3-030-87586-2_4
Zhang J, He X, Qing L, Gao F, Wang B (2022) PGAN: brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis. Comput Methods Programs Biomed 217:106676. https://doi.org/10.1016/j.cmpb.2022.106676
Mendonça LJC, Ferrari RJ, Initiative ADN (2023) Alzheimer’s disease classification based on graph kernel SVMs constructed with 3d texture features extracted from MR images. Expert Syst Appl 211:118633. https://doi.org/10.1016/j.eswa.2022.118633
Ma X, Zhao Y, Lu Y, Li P, Li X, Mei N, Wang J, Geng D, Zhao L, Yin B (2022) A dual-branch hybrid dilated CNN model for the AI-assisted segmentation of meningiomas in MR images. Comput Biol Med 151(Part):106279. https://doi.org/10.1016/j.compbiomed.2022.106279
Chen C, Qin C, Ouyang C, Li Z, Wang S, Qiu H, Chen L, Tarroni G, Bai W, Rueckert D (2022) Enhancing MR image segmentation with realistic adversarial data augmentation. Medical Image Anal 82:102597. https://doi.org/10.1016/j.media.2022.102597
Wei D, Ahmad S, Guo Y, Chen L, Huang Y, Ma L, Wu Z, Li G, Wang L, Lin W, Yap P, Shen D, Wang Q (2022) Recurrent tissue-aware network for deformable registration of infant brain MR images. IEEE Trans Med Imaging 41(5):1219–1229. https://doi.org/10.1109/TMI.2021.3137280
Zakeri A, Hokmabadi A, Bi N, Wijesinghe I, Nix MG, Petersen SE, Frangi AF, Taylor ZA, Gooya A (2023) Dragnet: learning-based deformable registration for realistic cardiac MR sequence generation from a single frame. Medical Image Anal 83:102678. https://doi.org/10.1016/j.media.2022.102678
Wang L, Du J, Gholipour A, Zhu H, He Z, Jia Y (2021) 3d dense convolutional neural network for fast and accurate single MR image super-resolution. Comput Med Imaging Graph 93:101973. https://doi.org/10.1016/j.compmedimag.2021.101973
Zhu D, Qiu D (2021) Residual dense network for medical magnetic resonance images super-resolution. Comput Methods Programs Biomed 209:106330. https://doi.org/10.1016/j.cmpb.2021.106330
Zhu J, Tan C, Yang J, Yang G, Lio’ P (2021) Arbitrary scale super-resolution for medical images. Int J Neural Syst 31(10):2150037–1215003720. https://doi.org/10.1142/S0129065721500374
Qiu D, Cheng Y, Wang X (2022) Dual u-net residual networks for cardiac magnetic resonance images super-resolution. Comput Methods Programs Biomed 218:106707. https://doi.org/10.1016/j.cmpb.2022.106707
Zhao X, Zhang Y, Qin Y, Wang Q, Zhang T, Li T (2022) Single MR image super-resolution via channel splitting and serial fusion network. Knowl Based Syst 246:108669. https://doi.org/10.1016/j.knosys.2022.108669
Wang H, Hu X, Zhao X, Zhang Y (2022) Wide weighted attention multi-scale network for accurate MR image super-resolution. IEEE Trans Circuits Syst Video Technol 32(3):962–975. https://doi.org/10.1109/TCSVT.2021.3070489
Li G, Lyu J, Wang C, Dou Q, Qin J (2022) Wavtrans: synergizing wavelet and cross-attention transformer for multi-contrast MRI super-resolution. In: Medical Image computing and computer assisted intervention: MICCAI 2022, vol. 13436, pp 463–473. https://doi.org/10.1007/978-3-031-16446-0_44
Yang G, Zhang L, Zhou M, Liu A, Chen X, Xiong Z, Wu F (2022) Model-guided multi-contrast deep unfolding network for MRI super-resolution reconstruction. In: MM ’22: the 30th ACM international conference on multimedia, pp 3974–3982. https://doi.org/10.1145/3503161.3548068
Wang R, Zhao R, Fu W, Zhang X, Zhang Y, Feng R (2022) Multi-contrast high quality MR image super-resolution with dual domain knowledge fusion. In: IEEE international conference on bioinformatics and biomedicine, BIBM 2022, pp 2127–2134. https://doi.org/10.1109/BIBM55620.2022.9995219
Li G, Lv J, Tian Y, Dou Q, Wang C, Xu C, Qin J (2022) Transformer-empowered multi-scale contextual matching and aggregation for multi-contrast MRI super-resolution. In: IEEE conference on computer vision and pattern recognition, CVPR 2022, pp 20604–20613. https://doi.org/10.1109/CVPR52688.2022.01998
Fang C, Zhang D, Wang L, Zhang Y, Cheng L, Han J (2022) Cross-modality high-frequency transformer for MR image super-resolution. In: MM ’22: the 30th ACM international conference on multimedia, pp 1584–1592. https://doi.org/10.1145/3503161.3547804
Kang L, Liu G, Huang J, Li J (2022) Super-resolution method for MR images based on multi-resolution CNN. Biomed Signal Process Control 72(Part):103372. https://doi.org/10.1016/j.bspc.2021.103372
Li Y, Iwamoto Y, Lin L, Xu R, Tong R, Chen Y (2021) Volumenet: a lightweight parallel network for super-resolution of MR and CT volumetric data. IEEE Trans Image Process 30:4840–4854. https://doi.org/10.1109/TIP.2021.3076285
Feng C, Wang K, Lu S, Xu Y, Li X (2021) Brain MRI super-resolution using coupled-projection residual network. Neurocomputing 456:190–199. https://doi.org/10.1016/j.neucom.2021.01.130
Qiu D, Cheng Y, Wang X (2021) radual back-projection residual attention network for magnetic resonance image super-resolution. Comput Methods Programs Biomed 208:106252. https://doi.org/10.1016/j.cmpb.2021.106252
Jiang M, Zhi M, Wei L, Yang X, Zhang J, Li Y, Wang P, Huang J, Yang G (2021) A-GAN: fused attentive generative adversarial networks for MRI image super-resolution. Comput Med Imaging Graph 92:101969. https://doi.org/10.1016/j.compmedimag.2021.101969
Zhang Y, Li K, Li K, Fu Y (2021) R image super-resolution with squeeze and excitation reasoning attention network. In: IEEE conference on computer vision and pattern recognition, CVPR 2021, pp 13425–13434. https://doi.org/10.1109/CVPR46437.2021.01322
Zeng K, Zheng H, Cai C, Yang Y, Zhang K, Chen Z (2018) imultaneous single- and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med 99:133–141. https://doi.org/10.1016/j.compbiomed.2018.06.010
Lyu Q, Shan H, Steber C, Helis C, Whitlow C, Chan M, Wang G (2020) Multi-contrast super-resolution MRI through a progressive network. IEEE Trans Med Imaging 39(9):2738–2749. https://doi.org/10.1109/TMI.2020.2974858
Feng C, Fu H, Yuan S, Xu Y (2021) Multi-contrast MRI super-resolution via a multi-stage integration network. In: Medical image computing and computer assisted intervention—MICCAI 12906, pp 140–149. https://doi.org/10.1007/978-3-030-87231-1_14
Tsiligianni E, Zerva M, Marivani I, Deligiannis N, Kondi LP (2021) Interpretable deep learning for multimodal super-resolution of medical images. In: Medical image computing and computer assisted intervention: MICCAI 12906, pp 421–429. https://doi.org/10.1007/978-3-030-87231-1_41
Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: Computer vision: ECCV 2014—13th European conference, vol. 8692, pp 184–199. https://doi.org/10.1007/978-3-319-10593-2_13
Thurnhofer-Hemsi K, López-Rubio E, Domínguez E, Baena RML, Roé-Vellvé N (2020) Deep learning-based super-resolution of 3d magnetic resonance images by regularly spaced shifting. Neurocomputing 398:314–327. https://doi.org/10.1016/j.neucom.2019.05.107
Qiu D, Zhang S, Liu Y, Zhu J, Zheng L (2020) Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning. Comput Methods Programs Biomed 187:105059. https://doi.org/10.1016/j.cmpb.2019.105059
Zhao C, Dewey BE, Pham DL, Calabresi PA, Reich DS, Prince JL (2021) SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans Med Imaging 40(3):805–817. https://doi.org/10.1109/TMI.2020.3037187
Zhang W, Wang L, Chen W, Jia Y, He Z, Du J (2022) 3d cross-scale feature transformer network for brain MR image super-resolution. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2022, pp 1356–1360. https://doi.org/10.1109/ICASSP43922.2022.9746092
Shi J, Liu Q, Wang C, Zhang Q, Ying S, Xu H (2018) Super-resolution reconstruction of MR image with a novel residual learning network algorithm. Phys Med Biol 63(8):085011. https://doi.org/10.1088/1361-6560/aab9e9
Zhu D, He H, Wang D (2023) Feedback attention network for cardiac magnetic resonance imaging super-resolution. Comput Methods Programs Biomed 231:107313. https://doi.org/10.1016/j.cmpb.2022.107313
Qiu D, Cheng Y, Wang X (2023) Progressive feedback residual attention network for cardiac magnetic resonance imaging super-resolution. IEEE J Biomed Health Inform 27(7):3478–3488. https://doi.org/10.1109/JBHI.2023.3272155
Chen Y, Shi F, Christodoulou AG, Xie Y, Zhou Z, Li D (2018) Efficient and accurate MRI super-resolution using a generative adversarial network and 3d multi-level densely connected network. In: Medical image computing and computer assisted intervention—MICCAI 2018 11070, pp 91–99. https://doi.org/10.1007/978-3-030-00928-1_11
Chen L, Yang X, Jeon G, Anisetti M, Liu K (2020) A trusted medical image super-resolution method based on feedback adaptive weighted dense network. Artif Intell Med 106:101857. https://doi.org/10.1016/j.artmed.2020.101857
Mahapatra D, Bozorgtabar B, Garnavi R (2019) Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph 71:30–39. https://doi.org/10.1016/j.compmedimag.2018.10.005
Zhao M, Liu X, Liu H, Wong KKL (2020) Super-resolution of cardiac magnetic resonance images using Laplacian pyramid based on generative adversarial networks. Comput Med Imaging Graph 80:101698. https://doi.org/10.1016/j.compmedimag.2020.101698
Lyu Q, Shan H, Wang G (2020) MRI super-resolution with ensemble learning and priors. IEEE Trans Comput Imaging 6:615–624. https://doi.org/10.1109/TCI.2020.2964201
Guerreiro J, Tomás P, Garcia NC, Aidos H (2023) Super-resolution of magnetic resonance images using generative adversarial networks. Comput Med Imaging Graph 108:102280. https://doi.org/10.1016/j.compmedimag.2023.102280
Wang L, Du J, Zhu H, He Z, Jia Y (2020) Brain MR image super-resolution using 3d feature attention network. In: IEEE international conference on bioinformatics and biomedicine, BIBM 2020, pp 1151–1155. https://doi.org/10.1109/BIBM49941.2020.9313377
Wang L, Zhu H, He Z, Jia Y, Du J (2022) Adjacent slices feature transformer network for single anisotropic 3d brain MRI image super-resolution. Biomed Signal Process Control 72(Part):103339. https://doi.org/10.1016/j.bspc.2021.103339
Hu X, Wang H, Cai Y, Zhao X, Zhang Y (2021) Pyramid orthogonal attention network based on dual self-similarity for accurate mr image super-resolution. In: 2021 IEEE international conference on multimedia and expo, ICME, pp 1–6. https://doi.org/10.1109/ICME51207.2021.9428112
Forigua C, Escobar M, Arbelaez P (2022) Superformer: volumetric transformer architectures for MRI super-resolution. In: Simulation and synthesis in medical imaging—7th international workshop, SASHIMI 2022, vol. 13570, pp 132–141. https://doi.org/10.1007/978-3-031-16980-9_13
Huang S, Liu X, Tan T, Hu M, Wei X, Chen T, Sheng B (2023) Transmrsr: transformer-based self-distilled generative prior for brain MRI super-resolution. Vis Comput 39(8):3647–3659. https://doi.org/10.1007/s00371-023-02938-3
Wang J, Levman J, Pinaya WHL, Tudosiu P, Cardoso MJ, Marinescu RV (2023) Inversesr: 3d brain MRI super-resolution using a latent diffusion model. In: Medical image computing and computer assisted intervention—MICCAI 2023 14229, pp 438–447. https://doi.org/10.1007/978-3-031-43999-5_42
Chung H, Lee ES, Ye JC (2023) MR image denoising and super-resolution using regularized reverse diffusion. IEEE Trans Med Imaging 42(4):922–934. https://doi.org/10.1109/TMI.2022.3220681
Wu Z, Chen X, Xie S, Shen J, Zeng Y (2023) Super-resolution of brain MRI images based on denoising diffusion probabilistic model. Biomed Signal Process Control 85:104901. https://doi.org/10.1016/j.bspc.2023.104901
Chen W, Zhao J, Wen Y, Xie B, Zhou X, Guo L, Yang L, Wang J, Dai Y, Zhou D (2015) Accuracy of 3-t MRI using susceptibility-weighted imaging to detect meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc 23:198–204. https://doi.org/10.1007/s00167-014-3035-0
Li Y, Sixou B, Peyrin F (2021) A review of the deep learning methods for medical images super resolution problems. Irbm 42(2):120–133. https://doi.org/10.1016/j.irbm.2020.08.004
Shi J, Li Z, Ying S, Wang C, Liu Q, Zhang Q, Yan P (2019) MR image super-resolution via wide residual networks with fixed skip connection. IEEE J Biomed Health Inform 23(3):1129–1140. https://doi.org/10.1109/JBHI.2018.2843819
Cherukuri V, Guo T, Schiff SJ, Monga V (2020) Deep MR brain image super-resolution using spatio-structural priors. IEEE Trans Image Process 29:1368–1383. https://doi.org/10.1109/TIP.2019.2942510
Delannoy Q, Pham C, Cazorla C, Tor-Díez C, Dollé G, Meunier H, Bednarek N, Fablet R, Passat N, Rousseau F (2020) Segsrgan: super-resolution and segmentation using generative adversarial networks—application to neonatal brain MRI. Comput Biol Med 120:103755. https://doi.org/10.1016/j.compbiomed.2020.103755
Xue X, Wang Y, Li J, Jiao Z, Ren Z, Gao X (2020) Progressive sub-band residual-learning network for MR image super resolution. IEEE J Biomed Health Inform 24(2):377–386. https://doi.org/10.1109/JBHI.2019.2945373
Huang S, Li J, Mei L, Zhang T, Chen Z, Dong Y, Dong L, Liu S, Lyu M (2023) Accurate multi-contrast MRI super-resolution via a dual cross-attention transformer network. In: Medical image computing and computer assisted intervention—MICCAI 2023 14229, pp 313–322. https://doi.org/10.1007/978-3-031-43999-5_30
Zhang J, Chi Y, Lyu J, Yang W, Tian Y (2023) Dual arbitrary scale super-resolution for multi-contrast MRI. In: Medical image computing and computer assisted intervention—MICCAI 2023, vol. 14229, pp 282–292. https://doi.org/10.1007/978-3-031-43999-5_27
Zou B, Ji Z, Zhu C, Dai Y, Zhang W, Kui X (2023) Multi-scale deformable transformer for multi-contrast knee MRI super-resolution. Biomed Signal Process Control 79(Part):104154. https://doi.org/10.1016/j.bspc.2022.104154
Zhao X, Zhang Y, Zhang T, Zou X (2019) Channel splitting network for single MR image super-resolution. IEEE Trans Image Process 28(11):5649–5662. https://doi.org/10.1109/TIP.2019.2921882
Lei P, Fang F, Zhang G, Xu M (2023) Deep unfolding convolutional dictionary model for multi-contrast MRI super-resolution and reconstruction. In: Proceedings of the thirty-second international joint conference on artificial intelligence, IJCAI 2023, pp 1008–1016. https://doi.org/10.24963/ijcai.2023/112
Lei P, Fang F, Zhang G, Zeng T (2023) Decomposition-based variational network for multi-contrast MRI super-resolution and reconstruction. In: Proceedings of the IEEE international conference on computer vision, pp 21296–21306
Mao Y, Jiang L, Chen X, Li C (2023) Disc-diff: Disentangled conditional diffusion model for multi-contrast MRI super-resolution. In: Medical image computing and computer assisted intervention—MICCAI 2023 14229, pp 387–397. https://doi.org/10.1007/978-3-031-43999-5_37
Pham C, Tor-Díez C, Meunier H, Bednarek N, Fablet R, Passat N, Rousseau F (2019) Multiscale brain MRI super-resolution using deep 3d convolutional networks. Comput Med Imaging Graph. https://doi.org/10.1016/j.compmedimag.2019.101647
Iwamoto Y, Takeda K, Li Y, Shiino A, Chen Y (2023) Unsupervised MRI super resolution using deep external learning and guided residual dense network with multimodal image priors. IEEE Trans Emerg Top Comput Intell 7(2):426–435. https://doi.org/10.1109/TETCI.2022.3215137
Wu Q, Li Y, Sun Y, Zhou Y, Wei H, Yu J, Zhang Y (2023) An arbitrary scale super-resolution approach for 3d MR images via implicit neural representation. IEEE J Biomed Health Inform 27(2):1004–1015. https://doi.org/10.1109/JBHI.2022.3223106
Zhou H, Huang Y, Li Y, Zhou Y, Zheng Y (2023) Blind super-resolution of 3d MRI via unsupervised domain transformation. IEEE J Biomed Health Inform 27(3):1409–1418. https://doi.org/10.1109/JBHI.2022.3232511
Du J, He Z, Wang L, Gholipour A, Zhou Z, Chen D, Jia Y (2020) Super-resolution reconstruction of single anisotropic 3d MR images using residual convolutional neural network. Neurocomputing 392:209–220. https://doi.org/10.1016/j.neucom.2018.10.102
Zbontar J, Knoll F, Sriram A, Muckley MJ, Bruno M, Defazio A, Parente M, Geras KJ, Katsnelson J, Chandarana H, Zhang Z, Drozdzal M, Romero A, Rabbat MG, Vincent P, Pinkerton J, Wang D, Yakubova N, Owens E, Zitnick CL, Recht MP, Sodickson DK, Lui YW (2018) fastmri: an open dataset and benchmarks for accelerated MRI. CoRR abs/1811.08839
Cocosco CA, Kollokian V, Kwan RK-S, Evans AC (1997) Brainweb: online interface to a 3d MRI simulated brain database. NeuroImage
...Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby JS, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner ER, Weber M, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan MT, Sarikaya D, Schwartz LH, Shin H, Shotton J, Silva CA, Sousa N, Subbanna NK, Székely G, Taylor TJ, Thomas OM, Tustison NJ, Ünal GB, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Leemput KV (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694
Hughes E, Cordero-Grande L, Murgasova M, Hutter J, Price A, Gomes ADS, Allsop J, Steinweg J, Tusor N, Wurie J, et al (2017) The developing human connectome: announcing the first release of open access neonatal brain imaging. Organ HumBrain Mapp:25–29
Worth A (2010) MGH CMA internet brain segmentation repository (IBSR)
Ahn N, Kang B, Sohn K (2018) Fast, accurate, and lightweight super-resolution with cascading residual network. In: Computer vision: ECCV 2018—15th European conference, vol. 11214, pp 256–272. https://doi.org/10.1007/978-3-030-01249-6_16
Lim B, Son S, Kim H, Nah S, Lee KM (2017) Enhanced deep residual networks for single image super-resolution. In: 2017 IEEE conference on computer vision and pattern recognition workshops, CVPR workshops, pp 1132–1140. https://doi.org/10.1109/CVPRW.2017.151
Zhao H, Gallo O, Frosio I, Kautz J (2017) Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3(1):47–57. https://doi.org/10.1109/TCI.2016.2644865
Lai W, Huang J, Ahuja N, Yang M (2017) Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE conference on computer vision and pattern recognition, CVPR 2017, pp 5835–5843. https://doi.org/10.1109/CVPR.2017.618
Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: Computer vision: ECCV 2016—14th European conference, vol. 9906, pp 694–711 . https://doi.org/10.1007/978-3-319-46475-6_43
Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: IEEE conference on computer vision and pattern recognition, CVPR 2016, pp 2414–2423. https://doi.org/10.1109/CVPR.2016.265
Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken AP, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE conference on computer vision and pattern recognition, CVPR 2017, pp 105–114. https://doi.org/10.1109/CVPR.2017.19
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861
Sheikh HR, Bovik AC, Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128. https://doi.org/10.1109/TIP.2005.859389
Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, pp 6626–6637. https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition, CVPR 2016, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308
Rodrigues L, Rezende TJR, Wertheimer G, Santos Y, França M, Rittner L (2022) A benchmark for hypothalamus segmentation on t1-weighted MR images. NeuroImage 264:119741. https://doi.org/10.1016/j.neuroimage.2022.119741
Zhuang Y, Liu H, Song E, Ma G, Xu X, Hung C (2022) Aprnet: a 3d anisotropic pyramidal reversible network with multi-modal cross-dimension attention for brain tissue segmentation in MR images. IEEE J Biomed Health Inform 26(2):749–761. https://doi.org/10.1109/JBHI.2021.3093932
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302. https://doi.org/10.2307/1932409
Kempton MJ, Underwood TSA, Brunton S, Stylios F, Schmechtig A, Ettinger U, Smith MS, Lovestone S, Crum WR, Frangou S, Williams SCR, Simmons A (2011) A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: evaluation of a novel lateral ventricle segmentation method. NeuroImage 58(4):1051–1059. https://doi.org/10.1016/j.neuroimage.2011.06.080
...Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby JS, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner ER, Weber M, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan MT, Sarikaya D, Schwartz LH, Shin H, Shotton J, Silva CA, Sousa NJ, Subbanna NK, Székely G, Taylor TJ, Thomas OM, Tustison NJ, Ünal GB, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Leemput KV (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694
Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright G (2009) Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J-Card MR Left Ventricle Segmentation Chall 49:4. https://doi.org/10.54294/g80ruo
Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD, Bogovic JA, Hua J, Chen M, Jarso S, Smith SA, Joel S, Mori S, Pekar JJ, Barker PB, Prince JL, Zijl PCM (2011) Multi-parametric neuroimaging reproducibility: a 3-t resource study. NeuroImage 54(4):2854–2866. https://doi.org/10.1016/j.neuroimage.2010.11.047
Ancel P-Y, Goffinet F (2014) Epipage 2: a preterm birth cohort in France in 2011. BMC Pediatr 14(1):1–8. https://doi.org/10.1186/1471-2431-14-97
Huang J, Singh A, Ahuja N (2015) Single image super-resolution from transformed self-exemplars. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, pp 5197–5206. https://doi.org/10.1109/CVPR.2015.7299156
Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498
...Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P, Cetin I, Lekadir K, Camara O, Ballester MÁG, Sanroma G, Napel S, Petersen SE, Tziritas G, Grinias E, Khened M, Varghese A, Krishnamurthi G, Rohé M, Pennec X, Sermesant M, Isensee F, Jaeger P, Maier-Hein KH, Full PM, Wolf I, Engelhardt S, Baumgartner CF, Koch LM, Wolterink JM, Isgum I, Jang Y, Hong Y, Patravali J, Jain S, Humbert O, Jodoin P (2018) Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans Med Imaging 37(11):2514–2525. https://doi.org/10.1109/TMI.2018.2837502
Snoek L, Miesen MM, Beemsterboer T, Van Der Leij A, Eigenhuis A, Steven Scholte H (2021) The Amsterdam open MRI collection, a set of multimodal MRI datasets for individual difference analyses. Sci Data 8(1):85. https://doi.org/10.1038/s41597-021-00870-6
Li H, Xuan Z, Zhou J, Hu X, Yang B (2023) Fast and accurate super-resolution of MR images based on lightweight generative adversarial network. Multim Tools Appl 82(2):2465–2487. https://doi.org/10.1007/s11042-022-13326-9
Feichtenhofer C, Fassold H, Schallauer P (2013) A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Process Lett 20(4):379–382. https://doi.org/10.1109/LSP.2013.2248711
Hassen R, Wang Z, Salama MMA (2013) Image sharpness assessment based on local phase coherence. IEEE Trans Image Process 22(7):2798–2810. https://doi.org/10.1109/TIP.2013.2251643
Shi F, Cheng J, Wang L, Yap P-T, Shen D (2015) Lrtv: Mr image super-resolution with low-rank and total variation regularizations. IEEE Trans Med Imaging 34(12):2459–2466. https://doi.org/10.1109/TMI.2015.2437894
He J, Liu Q, Christodoulou AG, Ma C, Lam F, Liang Z (2016) Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. IEEE Trans Med Imaging 35(9):2119–2129. https://doi.org/10.1109/TMI.2016.2550204
Li J, Liu H, Pan J, Yao H (2018) Training samples-optimizing based dictionary learning algorithm for MR sparse superresolution reconstruction. Biomed Signal Process Control 39:177–184. https://doi.org/10.1016/j.bspc.2017.08.007
Ravishankar S, Bresler Y (2011) MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 30(5):1028–1041. https://doi.org/10.1109/TMI.2010.2090538
Shi W, Caballero J, Huszar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: IEEE conference on computer vision and pattern recognition, CVPR 2016, pp 1874–1883. https://doi.org/10.1109/CVPR.2016.207
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, CVPR 2016, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Wang L, Du J, Gholipour A, He Z, Jia Y (2019) Brain MRI super-resolution reconstruction using a multi-level and parallel conv-deconv network. In: 2019 IEEE international conference on bioinformatics and biomedicine, BIBM, pp 885–891. https://doi.org/10.1109/BIBM47256.2019.8983233
Huang G, Liu Z, Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition, CVPR 2017, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243
Du J, Wang L, Gholipour A, He Z, Jia Y (2018) Accelerated super-resolution MR image reconstruction via a 3d densely connected deep convolutional neural network. In: IEEE international conference on bioinformatics and biomedicine, BIBM 2018, pp 349–355. https://doi.org/10.1109/BIBM.2018.8621073
He W, Hu Y, Wang L, He Z, Du J (2021) Gating feature dense network for single anisotropic MR image super-resolution. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2021, pp 1670–1674. https://doi.org/10.1109/ICASSP39728.2021.9414646
Liu J, Chen F, Wang X, Liao H (2019) An edge enhanced SRGAN for MRI super resolution in slice-selection direction. In: Multimodal brain image analysis and mathematical foundations of computational anatomy—4th international workshop, MBIA 2019, vol. 11846, pp 12–20. https://doi.org/10.1007/978-3-030-33226-6_2
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems 27: annual conference on neural information processing systems 2014, pp 2672–2680. https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN. Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in Neural information processing systems 30: annual conference on neural information processing systems 2017, pp 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th international conference on learning representations, ICLR. https://openreview.net/forum?id=YicbFdNTTy
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE international conference on computer vision, ICCV, pp 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986
Sohl-Dickstein J, Weiss EA, Maheswaranathan N, Ganguli S (2015) Deep unsupervised learning using nonequilibrium thermodynamics. In: Proceedings of the 32nd international conference on machine learning, ICML 2015, vol. 37, pp 2256–2265. http://proceedings.mlr.press/v37/sohl-dickstein15.html
Aubert-Broche B, Griffin M, Pike GB, Evans AC, Collins DL (2006) Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans Med Imaging 25(11):1410–1416. https://doi.org/10.1109/TMI.2006.883453
Lesjak Z, Galimzianova A, Koren A, Lukin M, Pernus F, Likar B, Spiclin Z (2018) A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1):51–63. https://doi.org/10.1007/s12021-017-9348-7
McGinnis J, Shit S, Li HB, Sideri-Lampretsa V, Graf R, Dannecker M, Pan J, Ansó NS, Mühlau M, Kirschke JS, Ruecker, D, Wiestler B (2023) Single-subject multi-contrast MRI super-resolution via implicit neural representations. In: Medical image computing and computer assisted intervention—MICCAI 2023, vol. 14227, pp 173–183. https://doi.org/10.1007/978-3-031-43993-3_17
Commowick O, Cervenansky F, Ameli R (2016) Msseg challenge proceedings: Multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure. In: Medical image computing and computer assisted intervention—MICCAI . https://api.semanticscholar.org/CorpusID:51996766
Lyu M, Mei L, Huang S, Liu S, Li Y, Yang K, Liu Y, Dong Y, Dong L, Wu EX (2023) M4raw: a multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research. Sci Data 10(1):264. https://doi.org/10.1038/s41597-023-02181-4
Akansu AN, Haddad RA (2001) Multiresolution signal decomposition: transforms, subbands, and wavelets
Corona V, Avilés-Rivero AI, Debroux N, Guyader CL, Schönlieb C (2021) Variational multi-task MRI reconstruction: joint reconstruction, registration and super-resolution. Med Image Anal 68:101941. https://doi.org/10.1016/j.media.2020.101941
Ebner M, Wang G, Li W, Aertsen M, Patel PA, Aughwane R, Melbourne A, Doel T, Dymarkowski S, Coppi PD, David AL, Deprest J, Ourselin S, Vercauteren T (2020) An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage. https://doi.org/10.1016/j.neuroimage.2019.116324
Feng C, Yan Y, Fu H, Chen L, Xu Y (2021) Task transformer network for joint MRI reconstruction and super-resolution. In: Medical image computing and computer assisted intervention—MICCAI 2021, vol. 12906, pp 307–317 . https://doi.org/10.1007/978-3-030-87231-1_30
Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: IEEE conference on computer vision and pattern recognition, CVPR 2016, pp 1646–1654. https://doi.org/10.1109/CVPR.2016.182
Zhang S, Liang G, Pan S, Zheng L (2019) A fast medical image super resolution method based on deep learning network. IEEE Access 7:12319–12327. https://doi.org/10.1109/ACCESS.2018.2871626
Feng C, Yan Y, Liu C, Fu H, Xu Y, Shao L (2021) Exploring separable attention for multi-contrast MR image super-resolution. CoRR abs/2109.01664
Sánchez I, Vilaplana V (2018) Brain MRI super-resolution using 3d generative adversarial networks. arXiv preprint arXiv:1812.11440
Chitty-Venkata KT, Somani AK (2023) Neural architecture search survey: a hardware perspective. ACM Comput Surv 55(4):78–17836. https://doi.org/10.1145/3524500
Sui Y, Afacan,O, Gholipour A, Warfield SK (2021) MRI super-resolution through generative degradation learning. In: Medical image computing and computer assisted intervention—MICCAI 2021, vol. 12906, pp 430–440. https://doi.org/10.1007/978-3-030-87231-1_42
Xuan K, Xiang L, Huang X, Zhang L, Liao S, Shen D, Wang Q (2022) Multimodal MRI reconstruction assisted with spatial alignment network. IEEE Trans Med Imaging 41(9):2499–2509. https://doi.org/10.1109/TMI.2022.3164050
Funding
The work was supported by the National Key R &D Program of China (No. 2018AAA0102100); the National Natural Science Foundation of China (No. U22A2034, 62177047); the Key Research and Development Program of Hunan Province (No. 2022SK2054); Central South University Research Programme of Advanced Interdisciplinary Studies (No. 2023QYJC020).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no Conflict of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ji, Z., Zou, B., Kui, X. et al. Deep learning-based magnetic resonance image super-resolution: a survey. Neural Comput & Applic 36, 12725–12752 (2024). https://doi.org/10.1007/s00521-024-09890-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-024-09890-w