Abstract
Graph convolution networks (GCNs) play an increasingly vital role in recommender systems, due to their remarkable relation modeling and representation capabilities. Concretely, they can capture high-order semantic correlations within sparse bipartite interaction graphs, thereby enhancing user–item collaborative encodings. Despite the exciting prospects, the existing GCN-based models mainly focus on user–item interactions and seldom consider effectiveness of the side item co-occurrence information on user behavior guidance, resulting in limited performance improvement. Therefore, we propose a novel side item co-occurrence information-aware GCN model. Specifically, we first decouple the original heterogeneous relation graph into corresponding user–item and item–item subgraphs for user–item interaction and item co-occurrence relation modeling. Thereafter, we conduct adaptive iterative aggregation on these subgraphs for user intention understanding and co-occurring item correlation perception. Finally, we present two semantic fusion strategies for sufficient user–item semantic collaborative learning, thereby boosting the overall recommendation performance. Extensive comparison experiments are conducted on three benchmark datasets to justify the superiority of our model.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated and analyzed during the current study are available at https://github.com/garfieldcat1985/cogcn.
Notes
A symmetric matrix structure is convenient for the model implementation in programming practice.
http://deepyeti.ucsd.edu/jianmo/amazon/index.html.
References
Bordes A, Usunier N, Garcia-Duran A (2013) Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th conference and workshop on neural information processing systems, p 2787–2795
Cao Y, Wang X, He X, Hu Z, Chua TS (2019) Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: Proceedings of the 28th international conference on world wide web, IW3C2, p 151–161
Chen T, Yin H, Ye G, Huang Z, Wang Y, Wang M (2020) Try this instead: personalized and interpretable substitute recommendation. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, ACM, p 891–900
Cheng Z, Ding Y, He X, Zhu L, Song X, Kankanhalli MS (2018) A\(^3\)ncf: an adaptive aspect attention model for rating prediction. In: Proceedings of the 27th international joint conference on artificial intelligence, ijcai.org, p 3748–3754
Cheng Z, Liu F, Mei S, Guo Y, Zhu L, Nie L (2021) Feature-level attentive ICF for recommendation. ACM Trans Inf Syst 40:1–24
Deng X, Guan P, Hei C, Li F, Liu J, Xiong N (2021) An intelligent resource allocation scheme in energy harvesting cognitive wireless sensor networks. IEEE Trans Netw Sci Eng 8(2):1900–1912
Deng X, Li J, Guan P, Zhang L (2021) Energy-efficient UAV-aided target tracking systems based on edge computing. IEEE Internet Things J 9:2207–2214
Deshpande M, Karypis G (2004) Item-based top-N recommendation algorithms. ACM Trans Inf Syst 1(1):143–177
Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7):2121–2159
Fu B, Zhang W, Hu G, Dai X, Huang S, Chen J (2021) Dual side deep context-aware modulation for social recommendation. In: Proceedings of the 2021 world wide web conference on world wide web, ACM, p 2524–2534
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th international conference on artificial intelligence and statistics, p 249–256
He X, Chen T, Kan MY, Chen X (2015) Trirank: reviewaware explainable rec-ommendation by modeling aspects. In: Proceedings of the 24th ACM international conference on information and knowledge management, ACM, p 1661–1670
He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017) Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, IW3C2, p 173–182
He X, Deng K, Wang X, Li Y, Zhang Y, Wang M (2020) Lightgcn: simplifying and powering graph convo-lution network for recommendation. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, ACM, p 639–648
Hsiehz CK, Yangy L, Cuiy Y, Liny TY, Belongiey S, Estrin D (2017) Collaborative metric learning. In: Proceedings of the 26th international conference on world wide web, IW3C2, p 193–201
Hu B, Shi C, Zhao WX, Yu PS (2018) Graph convolutional matrix completion. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, ACM
Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: Proceedings of the 3rd international conference on learning representations
Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th international conference on learning representations
Liang D, Altosaar J, Charlin L, Blei DM (2016) Factorization meets the item embedding: regularizing matrix factorization with item co-occurrence. In: Proceedings of the 10th ACM conference on recommender systems, ACM, p 59–66
Liu F, Cheng Z, Zhu L, Liu C, Nie L (2020) A\(^2\)gcn: an attribute-aware attentive gcn model for recommendation. IEEE Trans Knowl Data Eng 34:4077–4088
Liu F, Cheng Z, Liu Y, Zhu L, Gao Z, Nie L (2021a) Interest-aware message-passing GCN for recommendation. In: Proceedings of the 2021 world wide web conference on world wide web, ACM, p 1296–1305
Liu S, Yu J, Deng X, Wan S (2021) Fedcpf: an efficient-communication federated learning approach for vehicular edge computing in 6g communication networks. IEEE Trans Intell Transp Syst 23:1616–1629
Mao K, Zhu J, Xiao X, Lu B, Wang Z, He X (2021) Ultragcn: ultra simplification of graph convolutional networks for recommendation. In: Proceedings of the 30th ACM international conference on information and knowledge management, ACM, p 1253–1261
McAuley J, Targett C, Shi Q, Hengel AJVD (2015) Image-based recommendations on styles and substitutes. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, ACM, p 43–52
Park C, Kim D, Oh J, Yu H (2017) Do “also-viewed” products help user rating prediction? In: Proceedings of the 2017 world wide web conference on world wide web, ACM, p 1113–1122
Rendle S, Gantner Z, Freudenthaler C, Thieme LS (2011) Fast context-aware recommendations with factorization machines. In: Proceedings of the 34nd international ACM SIGIR conference on research and development in information retrieval, ACM, p 635–644
Sun J, Zhang Y, Ma C, Coates M, Guo H, Tang R, He X (2019) Multi-graph convolution collaborative filtering. In: Proceedings of IEEE international conference on data mining, IEEE
Wang X, He X, Cao Y, Liu M, Chua T (2019a) KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, ACM, p 950–958
Wang X, He X, Wang M, Feng F, Chua TS (2019b) Neural graph collaborative filtering. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, ACM, p 165–174
Wang X, Huang T, Wang D, Yuan Y, Liu Z, He X (2021) Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the 2021 world wide web conference on world wide web, ACM, p 878–887
Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the 28th international joint conference on artificial intelligence, AAAI, p 1112–1119
Wu B, Deng C, Guan B, Wang Y, Kangyang Y (2022) Enhancing sequential recommendation via decoupled knowledge graphs. The semantic web. Springer, Cham, pp 3–20
Wu L, Yang Y, Zhang K, Hong R, Fu Y, Wang M (2020) Joint item recommendation and attribute inference: an adaptive graph convolutional network approach. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, ACM, p 679–688
Xin X, He X, Zhang Y, Zhang Y, Jose J (2019) Relational collaborative filtering: modeling multiple item relations for recommendation. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, ACM, p 125–134
Hu Y, Nie L, Liu M, Wang K, Wang Y, Hua X (2021) Coarse-to-fine semantic alignment for cross-modal moment localization. IEEE Trans Image Process 30:5933–5943
Tang H, Zhu J, Wang L, Zheng Q, Zhang T (2022) Multi-level query interaction for temporal language grounding. IEEE Trans Intell Transp Syst 23:25479–25488
Tang H, Zhu J, Liu M, Gao Z, Cheng Z (2022) Frame-wise cross-modal matching for video moment retrieval. IEEE Trans Multimed 24:1338–1349
Xu M, Fu P, Liu B, Yin H, Li J (2021) A novel dynamic graph evolution network for salient object detection. Appl Intell 52:2854–2871
Xu M, Fu P, Liu B, Li J (2021) Multi-stream attention-aware graph convolution network for video salient object detection. IEEE Trans Image Process 30:4183–4197
Hu Y, Liu M, Su X, Gao Z, Nie L (2021) Video moment localization via deep cross-modal hashing. IEEE Trans Image Process 30:4667–4677
Hu Y, Zhan P, Xu Y, Zhao J, Li Y, Li X (2021) Temporal representation learning for time series classification. Neural Comput Appl 33:3169–3182
Jin Y, Wang S, Liu F, Fan H, Hu Y, Li X, Liu S (2023) Deep temporal state perception towards artificial cyber-physical systems. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2023.3239413
Yang B, Yih W, He X, Gao J, Deng L (2015) Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the 3rd international conference on learning representations
Zhang Y, Ai Q, Chen X, Wang P (2018) Learning over knowledge-base embeddings for recommendation. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, ACM
Zhao X, Cheng Z, Zhu L, Zheng J, Li X (2021) Ugrec: modeling directed and undirected relations for recommendation. In: Proceedings of the 44nd international ACM SIGIR conference on research and development in information retrieval, ACM, p 193–202
Acknowledgements
This work was supported in part by the Key R &D Program of Shandong Province, China (Major Scientific and Technological Innovation Projects), No.:2022CXGC020107; in part by the National Natural Science Foundation (NSF) of China, No.:62276155, No.:62206156, No.:72004127, and No.:62206157; in part by the NSF of Shandong Province, No.:ZR2021MF040 and No.:ZR2022QF047; in part by the Alibaba Group through Alibaba Innovative Research Program, No.:21169774.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflicts of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, X., Liu, F., Liu, H. et al. CoGCN: co-occurring item-aware GCN for recommendation. Neural Comput & Applic 35, 25107–25120 (2023). https://doi.org/10.1007/s00521-023-08703-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-023-08703-w