Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A novel transfer learning for recognition of overlapping nano object

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

While the science and technology of nanostructure have rapidly been developed in many fields, it is still hard to obtain sufficient samples of nano objects due to high cost, thus, impeding the development of deep learning approaches to the material fields. Here, we develop a novel approach to recognize nano objects in Atomic Force Microscope (AFM) images. First, a noise reduction method based on the Laplacian of the Gaussian(LoG) is represented to denoise the AFM images. Then, two improved methods based on the watershed algorithm are proposed to segment the overlapping objects. Finally, a CNN recognition model based on transfer learning which is pre-trained on a large scale of shapes of handwritten numbers and letters is built to recognize the nano objects in AFM images. These methods can resolve effectively the small sample problem of AFM image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. François P, De FAF, Menachem E (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896

    Article  Google Scholar 

  2. Nan G, Xiaosheng F (2015) Synthesis and development of grapheneinorganic semiconductor nanocomposites. Chem Rev 115(16):8294–8343

    Article  Google Scholar 

  3. Yanmei S, Bin Z (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541

    Article  Google Scholar 

  4. Qilin L, Shaily M, Lyon Delina Y, Lena B, Liga Michael V, Dong L, Alvarez Pedro JJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  Google Scholar 

  5. Shuilin W, Zhengyang W, Xiangmei Liu KWK, Chu YP et al (2014) Functionalized tio2 based nanomaterials for biomedical applications. Adv Funct Mater 24(35):5464–5481

    Article  Google Scholar 

  6. Yin Zhang TR, Hong NH, Weibo C (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645

    Article  Google Scholar 

  7. Guohai Y, Chengzhou Z, Dan D, Junjie Z, Yuehe L (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231

    Article  Google Scholar 

  8. Tour James M (2013) Top-down versus bottom-up fabrication of graphene-based electronics. Chem Mater 26(1):163–171

    Article  Google Scholar 

  9. Satoshi M, Akihiko K, Satoshi K, Hirohide S, Masami H (2013) Molecular robotics: a new paradigm for artifacts. New Gener Comput 31(1):27–45

    Article  Google Scholar 

  10. Yuexing H, Akito H, Akinori K, Ryosuke W, Yuichi O, Akihiko K (2015) Automatic recognition of dna pliers in atomic force microscopy images. New Gener Comput 33(3):253–270

    Article  Google Scholar 

  11. Haojun W, Chongxun Z, Dong M (2001) Applying watershed algorithm to segmentation of color images from blood and bone marrow smears. J Xian Jiaotong Univ 35(12):1296–1299

    Google Scholar 

  12. Boray Tek F, Dempster Andrew G, Izzet Kale (2005) Blood cell segmentation using minimum area watershed and circle radon transformations. Springer, Netherlands

    Google Scholar 

  13. Jierong C, Rajapakse Jagath C et al (2009) Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans Biomed Eng 56(3):741–748

    Article  Google Scholar 

  14. Qian W, Yuexing H, Qing L, Bing W, Akihiko K (2018) Segmenting overlapping nano-objects in atomic force microscopy image. J Nanophoton 12(1):016003

    Google Scholar 

  15. Huaibo S, Chuandong Z, Jingpeng P, Yibin Z, Xu Y (2013) Segmentation and reconstruction of overlapped apple images based on convex hull. Trans Chin Soc Agric Eng 29(3):163–168

    Google Scholar 

  16. Chanho J, Changick K, Wan CS, Sukjoong O (2010) Unsupervised segmentation of overlapped nuclei using bayesian classification. IEEE Trans Biomed Eng 57(12):2825–2832

    Article  Google Scholar 

  17. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  18. Felzenszwalb Pedro F, Huttenlocher Daniel P (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  19. Ondřej Daněk, Pavel Matula, Carlos Ortiz-de Solórzano, Arrate Muñoz-Barrutia, Martin Maška, Michal Kozubek (2009) Segmentation of touching cell nuclei using a two-stage graphcut model. In: Scandinavian conference on image analysis pp. 410–419

  20. Chiwoo P, Huang JZ, Ji JX, Ding Y (2012) Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans Pattern Anal Mach Intell 35(3):1–1

    Article  Google Scholar 

  21. Christoph S, Gerlich DW (2013) Machine learning in cell biology-teaching computers to recognize phenotypes. J Cell Sci 126(24):5529–5539

    Google Scholar 

  22. François C (2017) Xception: deep learning with depthwise separable convolutions. In: proceedings of the IEEE conference on computer vision and pattern recognition pp. 1251–1258

  23. Tsung-Han C, Kui J, Shenghua G, Jiwen L, Zinan Z, Yi M (2015) Pcanet: a simple deep learning baseline for image classification. IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  Google Scholar 

  24. Jialin PS, Qiang Y (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  25. Dan CC, U Meier, J Schmidhuber (2012) Transfer learning for latin and chinese characters with deep neural networks. In: the 2012 international joint conference on neural networks (IJCNN), pp. 1–6

  26. Akinori K, Yusuke S, Takahiro YX, Komiyama YM (2011) Nanomechanical dna origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat Commun 2(1):449

  27. Neves João C, Helena C, Ana T, Miguel C, Hugo P (2014) Detection and separation of overlapping cells based on contour concavity for leishmania images. Cytom Part A 85(6):491–500

    Article  Google Scholar 

  28. Tony Lindeberg (1994) Scale-space theory in computer vision. Kluwer Academic, Netherlands

    MATH  Google Scholar 

  29. Nobuyuki O (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyber 9(1):62–66

    Article  Google Scholar 

  30. Malpica N, de Solórzano C, Vaquero JJ, Santos A, Vallcorba I, García-Sagredo JM, Del Pozo F (2015) Applying watershed algorithms to the segmentation of clustered nuclei. Cytom Part B Clin Cytom 28(4):289–297

    Article  Google Scholar 

  31. Al Hamad HA, Zitar RA (2010) Development of an efficient neural-based segmentation technique for arabic handwriting recognition. Pattern Recog 43(8):2773–2798

    Article  Google Scholar 

  32. Lindeman MA (2000) Influences of land use on the biogeochemistry of streams. Fundamenta Informaticae 41(1–2):187–228

    MathSciNet  Google Scholar 

  33. Ron K, Nahum K, Bruckstein AM (1996) Sub-pixel distance maps and weighted distance transforms. J Math Imaging Vis 6(2–3):223–233

    MathSciNet  Google Scholar 

  34. Granlund Gösta H (1972) Fourier preprocessing for hand print character recognition. IEEE Trans Comput 100(2):195–201

    Article  MathSciNet  Google Scholar 

  35. Jacob F, Manish S (2005) Information along contours and object boundaries. Psychol Rev 112(1):243

    Article  Google Scholar 

  36. Corinna C, Vladimir V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  37. Irina Rish et al (2001) An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial intelligence vol 3, pp. 41–46

  38. Kai HL, Peter S (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001

    Article  Google Scholar 

  39. Xuhong L, Yves G, Franck D (2020) A baseline regularization scheme for transfer learning with convolutional neural networks. Pattern Recog 98:107049

    Article  Google Scholar 

  40. Zhang X, Zou J, He K, Sun J (2015) Accelerating very deep convolutional networks for classification and detection. IEEE Trans Pattern Anal Mach Intell 38(10):1943–1955

    Article  Google Scholar 

  41. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition pp. 770–778

  42. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K (2014) Densenet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869

  43. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2818–2826

Download references

Acknowledgements

This research is sponsored by the National Key Research and Development Program of China (Grant Nos. 2018YFB0704400, 2018YFB0704402, 2020YFB0704503), Natural Science Foundation of Shanghai (Grant No. 20ZR1419000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexing Han.

Ethics declarations

Conflict of interest

The authors declare that there is no financial and personal conflict of Interest statement with any person or organizations that could inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, Y., Wang, B. et al. A novel transfer learning for recognition of overlapping nano object. Neural Comput & Applic 34, 5729–5741 (2022). https://doi.org/10.1007/s00521-021-06731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06731-y

Keywords

Navigation