Abstract
This paper proposes a modified version of a well-known optimization technique called Farmland Fertility Optimization algorithm (FFA). The modified FFA (MFFA) is developed in order to improve the performance of conventional FFA. It is mainly based on two stages. Firstly, the Levy flights are used to enhance the local searching capability in the exploitation phase and the global searching capability in the exploration phase. Secondly sine–cosine functions are used to create different solutions which fluctuate outwards or towards the best possible solution. The developed algorithm has been validated using ten benchmark functions and three mechanical engineering benchmark optimization problems. After that, the newly developed algorithm MFFA is used for extracting the effective unknown parameters of Proton Exchange Membrane Fuel Cells (PEMFCs) models. The optimal extraction of these parameters is essential to determine an accurate semi-empirical mathematical model for PEMFC. The sum of squared errors between the experimental data and the corresponding calculated ones is adopted as the objective function. Four different commercial PEMFC stacks are used to validate the effectiveness of the developed algorithm. The results obtained by MFFA are compared with those obtained by the conventional FFA and other well-known optimization techniques. Moreover, a comprehensive statistical analysis is performed to determine the accuracy and efficiency of the developed algorithm. The results prove the reliability and superiority of the developed algorithm compared with the conventional FFA and other state-of-the-art optimizers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- FC:
-
Fuel cell
- PEMFC:
-
Proton exchange membrane fuel cell
- SSE:
-
Sum of squared errors
- V stack :
-
PEMFC stack voltage (V)
- E Nernst :
-
Nernst voltage of a single FC (V)
- N cells :
-
Number of cells in the stack
- v act, v ohm , and v con :
-
Activation, ohmic, and concentration over potential, respectively (V)
- T :
-
FC operating temperature (K)
- P H2 and P O2 :
-
Hydrogen and oxygen partial pressures, respectively (atm)
- ζ 1, ζ 2, ζ 3, and ζ 4 :
-
Parametric adjustable parameters for a particular FC
- I fc :
-
PEMFC stack current (A)
- R c and R M :
-
Resistance due to concentration and transfer of proton, respectively (Ω)
- ρ M :
-
Specific resistance of the membrane (Ω cm)
- l :
-
Membrane thickness (μm)
- A :
-
Effective electrode area (cm2)
- λ :
-
Adjustable parameter describes the water content in the membrane
- b :
-
Parametric coefficient (V)
- J and J max :
-
Actual and maximum current density of the FC stack, respectively (A cm−2)
- N :
-
Population size
- k :
-
Number of sections
- n :
-
Number of solutions available in each section
- maxiter :
-
Maximum number of iterations
- L j and U j :
-
Lower and upper limits of the design variable, respectively
- Fit_Sections:
-
Average quality of the solutions in each section
- M local and M Global :
-
Number of solutions in local and global memories, respectively
- t :
-
Constant between 0.1 and 1
- h :
-
Decimal number
- α :
-
A number in the range of (0,1)
- X MGlobal :
-
A randomly selected solution from the global memory
- X new :
-
A new solution that obtained by applied changes
- β :
-
An arbitrary number in the range of (0,1)
- Best Local :
-
The best available solution in the local memory
- Best Global :
-
The best solution ever found
- Q :
-
A parameter between (0,1)
- w 1 :
-
A parameter of the FFA reduced as the optimization process progresses
- R v :
-
A constant number between 0 to 1
- rr 1 and rr 2 :
-
Two randomly distributed numbers between [0,1]
- MaxIt :
-
Maximum number of iterations
- rand :
-
A random number between (0,1)
References
Yang S, Wang N (2012) A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model. Int J Hydrogen Energy 37(10):8465–8476. https://doi.org/10.1016/j.ijhydene.2012.02.131
Jiménez-Rodríguez A, Serrano A, Benjumea T, Borja R, El Kaoutit M, Fermoso FG (2019) Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes. Emerg Sci J 3(2):109. https://doi.org/10.28991/esj-2019-01174
Askarzadeh A, Rezazadeh A (2011) A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. Int J Hydrogen Energy 36(8):5047–5053. https://doi.org/10.1016/j.ijhydene.2011.01.070
Meshkat A, Vaezi MJ, Babaluo AA (2018) Study the effect of seeding suspension concentration of DD3R particles on the modified surface of Α-Alumina support for preparing DD3R zeolite membrane with high quality. Emerg Sci J 2(1):53–58. https://doi.org/10.28991/esj-2018-01127
Corrêa JM, Farret FA, Canha LN, Simoes MG (2004) An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans Ind Electron 51(5):1103–1112. https://doi.org/10.1109/TIE.2004.834972
Rajasekar N, Jacob B, Balasubramanian K, Priya K, Sangeetha K, Babu TS (2015) Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm. Ain Shams Eng J 6(4):1187–1194. https://doi.org/10.1016/j.asej.2015.05.007
Kadjo A-J, Brault P, Caillard A, Coutanceau C, Garnier J-P, Martemianov S (2007) Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation. J Power Sources 172(2):613–622. https://doi.org/10.1016/j.jpowsour.2007.05.019
Geem Z, Noh JS (2016) Parameter estimation for a proton exchange membrane fuel cell model using GRG technique. Fuel Cells 16(5):640–645. https://doi.org/10.1002/fuce.201500190
Aouali FZ, Becherif M, Ramadan HS, Emziane M, Khellaf A, Mohammedi K (2017) Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production. Int J Hydrogen Energy 42(2):1366–1374. https://doi.org/10.1016/j.ijhydene.2016.03.101
Amphlett JC, Baumert R, Mann RF, Peppley BA, Roberge PR, Harris TJ (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II. Empirical model development. J Electrochem Soc 142(1):9. https://doi.org/10.1149/1.2043959
Dedigama I, Ayers K, Shearing PR, Brett DJ (2014) An experimentally validated steady state polymer electrolyte membrane water electrolyser model. Int J Electrochem Sci 9(5):2662–2681
Abdollahzadeh M, Pascoa J, Ranjbar A, Esmaili Q (2014) Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling. Energy 68:478–494. https://doi.org/10.1016/j.energy.2014.01.075
Kheirmand M, Asnafi A (2011) Analytic parameter identification of proton exchange membrane fuel cell catalyst layer using electrochemical impedance spectroscopy. Int J Hydrogen Energy 36(20):13266–13271. https://doi.org/10.1016/j.ijhydene.2010.08.088
Taleb MA, Béthoux O, Godoy E (2017) Identification of a PEMFC fractional order model. Int J Hydrogen Energy 42(2):1499–1509. https://doi.org/10.1016/j.ijhydene.2016.07.056
Mo ZJ, Zhu XJ, Wei LY, Cao GY (2006) Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int J Energy Res 30(8):585–597. https://doi.org/10.1002/er.1170
Ye M, Wang X, Xu Y (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34(2):981–989. https://doi.org/10.1016/j.ijhydene.2008.11.026
Gong W, Cai Z (2013) Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution. Energy 59:356–364. https://doi.org/10.1016/j.energy.2013.07.005
Sun Z, Wang N, Bi Y, Srinivasan D (2015) Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy 90:1334–1341. https://doi.org/10.1016/j.energy.2015.06.081
Zhu Q, Wang N, Zhang L (2014) Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 39(31):17779–17790. https://doi.org/10.1016/j.ijhydene.2014.07.081
Dai C, Chen W, Cheng Z, Li Q, Jiang Z, Jia J (2011) Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int J Electr Power Energy Syst 33(3):369–376. https://doi.org/10.1016/j.ijepes.2010.08.032
Menesy AS, Sultan HM, Korashy A, Banakhr FA, Ashmawy MG, Kamel S (2020) Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access 8:31892–31909. https://doi.org/10.1109/ACCESS.2020.2973351
Xu S, Wang Y, Wang Z (2019) Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method. Energy 173:457–467. https://doi.org/10.1016/j.energy.2019.02.106
Fathy A, Rezk H (2018) Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 143:634–644. https://doi.org/10.1016/j.energy.2017.11.014
Menesy AS, Sultan HM, Selim A, Ashmawy MG, Kamel S (2019) Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8:1146–1159. https://doi.org/10.1109/ACCESS.2019.2961811
Turgut OE, Coban MT (2016) Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization-Differential Evolution algorithm. Ain Shams Eng J 7(1):347–360. https://doi.org/10.1016/j.asej.2015.05.003
Rao Y, Shao Z, Ahangarnejad AH, Gholamalizadeh E, Sobhani B (2019) Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Convers Manag 182:1–8. https://doi.org/10.1016/j.enconman.2018.12.057
Sultan HM, Menesy AS, Kamel S, Tostado-Véliz M, Jurado F (2020) Parameter identification of proton exchange membrane fuel cell stacks using Bonobo optimizer. In: Presented at the IEEE international conference on environment and electrical engineering, Madrid, Spain, 2020. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160597
Chen Y, Wang N (2019) Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 44(5):3075–3087. https://doi.org/10.1016/j.ijhydene.2018.11.140
Menesy AS, Sultan HM, Kamel S (2020) Extracting model parameters of proton exchange membrane fuel cell using equilibrium optimizer algorithm. In: 2020 international youth conference on radio electronics, electrical and power engineering (REEPE), 2020, pp 1–7. IEEE. https://doi.org/10.1109/REEPE49198.2020.9059219
Guarnieri M, Negro E, Di Noto V, Alotto P (2016) A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. J Power Sources 332:249–264. https://doi.org/10.1016/j.jpowsour.2016.09.131
Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204. https://doi.org/10.1002/er.2915
El-Fergany AA (2017) Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew Power Gener 12(1):9–17. https://doi.org/10.1049/iet-rpg.2017.0232
Sultan HM, Menesy AS, Kamel S, Jurado F (2020) Tree growth algorithm for parameter identification of proton exchange membrane fuel cell models. Int J Interact Multimed Artif Intell 3(7):1–44. https://doi.org/10.9781/ijimai.2020.03.003
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893
Jalili A, Ghadimi N (2016) Hybrid harmony search algorithm and fuzzy mechanism for solving congestion management problem in an electricity market. Complexity 21:90–98. https://doi.org/10.1002/cplx.21713
Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J Electrochem Soc 142(1):1–8. https://doi.org/10.1149/1.2043866
Lee H, Song H, Kim J Effect of reverse voltage on proton exchange membrane fuel cell performance. In: 2006 international forum on strategic technology, 2006, pp 205–208: IEEE. https://doi.org/10.1109/IFOST.2006.312286
Panos C, Kouramas K, Georgiadis M, Pistikopoulos E (2012) Modelling and explicit model predictive control for PEM fuel cell systems. Chem Eng Sci 67(1):15–25. https://doi.org/10.1016/j.ces.2011.06.068
Morsali R, Ghadimi N, Karimi M, Mohajeryami S (2015) Solving a novel multiobjective placement problem of recloser and distributed generation sources in simultaneous mode by improved harmony search algorithm. Complexity 21(1):328–339. https://doi.org/10.1002/cplx.21567
Kandidayeni M, Macias A, Khalatbarisoltani A, Boulon L, Kelouwani S (2019) Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 183:912–925. https://doi.org/10.1016/j.energy.2019.06.152
Ali M, El-Hameed M, Farahat M (2017) Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew Energy 111:455–462. https://doi.org/10.1016/j.renene.2017.04.036
Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746. https://doi.org/10.1016/j.asoc.2018.07.033
Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1
Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022
Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127. https://doi.org/10.1016/S0166-3615(99)00046-9
Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Meth Eng 21(9):1583–1599. https://doi.org/10.1002/nme.1620210904
Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203. https://doi.org/10.1016/S1474-0346(02)00011-3
Arora JS (2004) Introduction to optimum design. Elsevier
Sandgren E (1990) NIDP in mechanical design optimization. J Mech Des 112(2):223–229
Acknowledgment
The authors thank the support of the National Research and Development Agency of Chile (ANID), ANID/Fondap/15110019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Menesy, A.S., Sultan, H.M., Korashy, A. et al. A modified farmland fertility optimizer for parameters estimation of fuel cell models. Neural Comput & Applic 33, 12169–12190 (2021). https://doi.org/10.1007/s00521-021-05821-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-021-05821-1