Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A modified farmland fertility optimizer for parameters estimation of fuel cell models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a modified version of a well-known optimization technique called Farmland Fertility Optimization algorithm (FFA). The modified FFA (MFFA) is developed in order to improve the performance of conventional FFA. It is mainly based on two stages. Firstly, the Levy flights are used to enhance the local searching capability in the exploitation phase and the global searching capability in the exploration phase. Secondly sine–cosine functions are used to create different solutions which fluctuate outwards or towards the best possible solution. The developed algorithm has been validated using ten benchmark functions and three mechanical engineering benchmark optimization problems. After that, the newly developed algorithm MFFA is used for extracting the effective unknown parameters of Proton Exchange Membrane Fuel Cells (PEMFCs) models. The optimal extraction of these parameters is essential to determine an accurate semi-empirical mathematical model for PEMFC. The sum of squared errors between the experimental data and the corresponding calculated ones is adopted as the objective function. Four different commercial PEMFC stacks are used to validate the effectiveness of the developed algorithm. The results obtained by MFFA are compared with those obtained by the conventional FFA and other well-known optimization techniques. Moreover, a comprehensive statistical analysis is performed to determine the accuracy and efficiency of the developed algorithm. The results prove the reliability and superiority of the developed algorithm compared with the conventional FFA and other state-of-the-art optimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

FC:

Fuel cell

PEMFC:

Proton exchange membrane fuel cell

SSE:

Sum of squared errors

V stack :

PEMFC stack voltage (V)

E Nernst :

Nernst voltage of a single FC (V)

N cells :

Number of cells in the stack

v act, v ohm , and v con :

Activation, ohmic, and concentration over potential, respectively (V)

T :

FC operating temperature (K)

P H2 and P O2 :

Hydrogen and oxygen partial pressures, respectively (atm)

ζ 1, ζ 2, ζ 3, and ζ 4 :

Parametric adjustable parameters for a particular FC

I fc :

PEMFC stack current (A)

R c and R M :

Resistance due to concentration and transfer of proton, respectively (Ω)

ρ M :

Specific resistance of the membrane (Ω cm)

l :

Membrane thickness (μm)

A :

Effective electrode area (cm2)

λ :

Adjustable parameter describes the water content in the membrane

b :

Parametric coefficient (V)

J and J max :

Actual and maximum current density of the FC stack, respectively (A cm−2)

N :

Population size

k :

Number of sections

n :

Number of solutions available in each section

maxiter :

Maximum number of iterations

L j and U j :

Lower and upper limits of the design variable, respectively

Fit_Sections:

Average quality of the solutions in each section

M local and M Global :

Number of solutions in local and global memories, respectively

t :

Constant between 0.1 and 1

h :

Decimal number

α :

A number in the range of (0,1)

X MGlobal :

A randomly selected solution from the global memory

X new :

A new solution that obtained by applied changes

β :

An arbitrary number in the range of (0,1)

Best Local :

The best available solution in the local memory

Best Global :

The best solution ever found

Q :

A parameter between (0,1)

w 1 :

A parameter of the FFA reduced as the optimization process progresses

R v :

A constant number between 0 to 1

rr 1 and rr 2 :

Two randomly distributed numbers between [0,1]

MaxIt :

Maximum number of iterations

rand :

A random number between (0,1)

References

  1. Yang S, Wang N (2012) A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model. Int J Hydrogen Energy 37(10):8465–8476. https://doi.org/10.1016/j.ijhydene.2012.02.131

    Article  Google Scholar 

  2. Jiménez-Rodríguez A, Serrano A, Benjumea T, Borja R, El Kaoutit M, Fermoso FG (2019) Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes. Emerg Sci J 3(2):109. https://doi.org/10.28991/esj-2019-01174

    Article  Google Scholar 

  3. Askarzadeh A, Rezazadeh A (2011) A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. Int J Hydrogen Energy 36(8):5047–5053. https://doi.org/10.1016/j.ijhydene.2011.01.070

    Article  Google Scholar 

  4. Meshkat A, Vaezi MJ, Babaluo AA (2018) Study the effect of seeding suspension concentration of DD3R particles on the modified surface of Α-Alumina support for preparing DD3R zeolite membrane with high quality. Emerg Sci J 2(1):53–58. https://doi.org/10.28991/esj-2018-01127

    Article  Google Scholar 

  5. Corrêa JM, Farret FA, Canha LN, Simoes MG (2004) An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans Ind Electron 51(5):1103–1112. https://doi.org/10.1109/TIE.2004.834972

    Article  Google Scholar 

  6. Rajasekar N, Jacob B, Balasubramanian K, Priya K, Sangeetha K, Babu TS (2015) Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm. Ain Shams Eng J 6(4):1187–1194. https://doi.org/10.1016/j.asej.2015.05.007

    Article  Google Scholar 

  7. Kadjo A-J, Brault P, Caillard A, Coutanceau C, Garnier J-P, Martemianov S (2007) Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation. J Power Sources 172(2):613–622. https://doi.org/10.1016/j.jpowsour.2007.05.019

    Article  Google Scholar 

  8. Geem Z, Noh JS (2016) Parameter estimation for a proton exchange membrane fuel cell model using GRG technique. Fuel Cells 16(5):640–645. https://doi.org/10.1002/fuce.201500190

    Article  Google Scholar 

  9. Aouali FZ, Becherif M, Ramadan HS, Emziane M, Khellaf A, Mohammedi K (2017) Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production. Int J Hydrogen Energy 42(2):1366–1374. https://doi.org/10.1016/j.ijhydene.2016.03.101

    Article  Google Scholar 

  10. Amphlett JC, Baumert R, Mann RF, Peppley BA, Roberge PR, Harris TJ (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II. Empirical model development. J Electrochem Soc 142(1):9. https://doi.org/10.1149/1.2043959

    Article  Google Scholar 

  11. Dedigama I, Ayers K, Shearing PR, Brett DJ (2014) An experimentally validated steady state polymer electrolyte membrane water electrolyser model. Int J Electrochem Sci 9(5):2662–2681

    Google Scholar 

  12. Abdollahzadeh M, Pascoa J, Ranjbar A, Esmaili Q (2014) Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling. Energy 68:478–494. https://doi.org/10.1016/j.energy.2014.01.075

    Article  Google Scholar 

  13. Kheirmand M, Asnafi A (2011) Analytic parameter identification of proton exchange membrane fuel cell catalyst layer using electrochemical impedance spectroscopy. Int J Hydrogen Energy 36(20):13266–13271. https://doi.org/10.1016/j.ijhydene.2010.08.088

    Article  Google Scholar 

  14. Taleb MA, Béthoux O, Godoy E (2017) Identification of a PEMFC fractional order model. Int J Hydrogen Energy 42(2):1499–1509. https://doi.org/10.1016/j.ijhydene.2016.07.056

    Article  Google Scholar 

  15. Mo ZJ, Zhu XJ, Wei LY, Cao GY (2006) Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int J Energy Res 30(8):585–597. https://doi.org/10.1002/er.1170

    Article  Google Scholar 

  16. Ye M, Wang X, Xu Y (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34(2):981–989. https://doi.org/10.1016/j.ijhydene.2008.11.026

    Article  Google Scholar 

  17. Gong W, Cai Z (2013) Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution. Energy 59:356–364. https://doi.org/10.1016/j.energy.2013.07.005

    Article  Google Scholar 

  18. Sun Z, Wang N, Bi Y, Srinivasan D (2015) Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy 90:1334–1341. https://doi.org/10.1016/j.energy.2015.06.081

    Article  Google Scholar 

  19. Zhu Q, Wang N, Zhang L (2014) Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 39(31):17779–17790. https://doi.org/10.1016/j.ijhydene.2014.07.081

    Article  Google Scholar 

  20. Dai C, Chen W, Cheng Z, Li Q, Jiang Z, Jia J (2011) Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int J Electr Power Energy Syst 33(3):369–376. https://doi.org/10.1016/j.ijepes.2010.08.032

    Article  Google Scholar 

  21. Menesy AS, Sultan HM, Korashy A, Banakhr FA, Ashmawy MG, Kamel S (2020) Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access 8:31892–31909. https://doi.org/10.1109/ACCESS.2020.2973351

    Article  Google Scholar 

  22. Xu S, Wang Y, Wang Z (2019) Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method. Energy 173:457–467. https://doi.org/10.1016/j.energy.2019.02.106

    Article  Google Scholar 

  23. Fathy A, Rezk H (2018) Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 143:634–644. https://doi.org/10.1016/j.energy.2017.11.014

    Article  Google Scholar 

  24. Menesy AS, Sultan HM, Selim A, Ashmawy MG, Kamel S (2019) Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8:1146–1159. https://doi.org/10.1109/ACCESS.2019.2961811

    Article  Google Scholar 

  25. Turgut OE, Coban MT (2016) Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization-Differential Evolution algorithm. Ain Shams Eng J 7(1):347–360. https://doi.org/10.1016/j.asej.2015.05.003

    Article  Google Scholar 

  26. Rao Y, Shao Z, Ahangarnejad AH, Gholamalizadeh E, Sobhani B (2019) Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Convers Manag 182:1–8. https://doi.org/10.1016/j.enconman.2018.12.057

    Article  Google Scholar 

  27. Sultan HM, Menesy AS, Kamel S, Tostado-Véliz M, Jurado F (2020) Parameter identification of proton exchange membrane fuel cell stacks using Bonobo optimizer. In: Presented at the IEEE international conference on environment and electrical engineering, Madrid, Spain, 2020. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160597

  28. Chen Y, Wang N (2019) Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 44(5):3075–3087. https://doi.org/10.1016/j.ijhydene.2018.11.140

    Article  Google Scholar 

  29. Menesy AS, Sultan HM, Kamel S (2020) Extracting model parameters of proton exchange membrane fuel cell using equilibrium optimizer algorithm. In: 2020 international youth conference on radio electronics, electrical and power engineering (REEPE), 2020, pp 1–7. IEEE. https://doi.org/10.1109/REEPE49198.2020.9059219

  30. Guarnieri M, Negro E, Di Noto V, Alotto P (2016) A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. J Power Sources 332:249–264. https://doi.org/10.1016/j.jpowsour.2016.09.131

    Article  Google Scholar 

  31. Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204. https://doi.org/10.1002/er.2915

    Article  Google Scholar 

  32. El-Fergany AA (2017) Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew Power Gener 12(1):9–17. https://doi.org/10.1049/iet-rpg.2017.0232

    Article  Google Scholar 

  33. Sultan HM, Menesy AS, Kamel S, Jurado F (2020) Tree growth algorithm for parameter identification of proton exchange membrane fuel cell models. Int J Interact Multimed Artif Intell 3(7):1–44. https://doi.org/10.9781/ijimai.2020.03.003

    Article  Google Scholar 

  34. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  35. Jalili A, Ghadimi N (2016) Hybrid harmony search algorithm and fuzzy mechanism for solving congestion management problem in an electricity market. Complexity 21:90–98. https://doi.org/10.1002/cplx.21713

    Article  MathSciNet  Google Scholar 

  36. Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J Electrochem Soc 142(1):1–8. https://doi.org/10.1149/1.2043866

    Article  Google Scholar 

  37. Lee H, Song H, Kim J Effect of reverse voltage on proton exchange membrane fuel cell performance. In: 2006 international forum on strategic technology, 2006, pp 205–208: IEEE. https://doi.org/10.1109/IFOST.2006.312286

  38. Panos C, Kouramas K, Georgiadis M, Pistikopoulos E (2012) Modelling and explicit model predictive control for PEM fuel cell systems. Chem Eng Sci 67(1):15–25. https://doi.org/10.1016/j.ces.2011.06.068

    Article  Google Scholar 

  39. Morsali R, Ghadimi N, Karimi M, Mohajeryami S (2015) Solving a novel multiobjective placement problem of recloser and distributed generation sources in simultaneous mode by improved harmony search algorithm. Complexity 21(1):328–339. https://doi.org/10.1002/cplx.21567

    Article  MathSciNet  Google Scholar 

  40. Kandidayeni M, Macias A, Khalatbarisoltani A, Boulon L, Kelouwani S (2019) Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 183:912–925. https://doi.org/10.1016/j.energy.2019.06.152

    Article  Google Scholar 

  41. Ali M, El-Hameed M, Farahat M (2017) Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew Energy 111:455–462. https://doi.org/10.1016/j.renene.2017.04.036

    Article  Google Scholar 

  42. Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746. https://doi.org/10.1016/j.asoc.2018.07.033

    Article  Google Scholar 

  43. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  44. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  45. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  Google Scholar 

  46. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Meth Eng 21(9):1583–1599. https://doi.org/10.1002/nme.1620210904

    Article  MATH  Google Scholar 

  47. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203. https://doi.org/10.1016/S1474-0346(02)00011-3

    Article  Google Scholar 

  48. Arora JS (2004) Introduction to optimum design. Elsevier

    Book  Google Scholar 

  49. Sandgren E (1990) NIDP in mechanical design optimization. J Mech Des 112(2):223–229

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the support of the National Research and Development Agency of Chile (ANID), ANID/Fondap/15110019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jurado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menesy, A.S., Sultan, H.M., Korashy, A. et al. A modified farmland fertility optimizer for parameters estimation of fuel cell models. Neural Comput & Applic 33, 12169–12190 (2021). https://doi.org/10.1007/s00521-021-05821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05821-1

Keywords

Navigation