Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, bio-inspired computational techniques have been exploited to get the numerical solution of a nonlinear two-point boundary value problem arising in the modelling of the corneal shape. The computational process of modelling and optimization makes enormously straightforward to obtain accurate approximate solutions of the corneal shape models through artificial neural networks, pattern search (PS), genetic algorithms (GAs), simulated annealing (SA), active-set technique (AST), interior-point technique, sequential quadratic programming and their hybrid forms based on GA–AST, PS–AST and SA–AST. Numerical results show that the designed solvers provide a reasonable precision and efficiency with minimal computational cost. The efficacy of the proposed computing strategies is also investigated through a descriptive statistical analysis by means of histogram illustrations, probability plots and one-way analysis of variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barbosa YM, Hernández DM (2001) A review of methods for measuring corneal topography. Optom Vis Sci 78:240–253

    Google Scholar 

  2. Okrasiński W, Płociniczak Ł (2013) Bessel function model of corneal topography. Appl Math Comput 223:36–443

    MathSciNet  MATH  Google Scholar 

  3. Coelho I, Corsato C, Omari P (2014) A one-dimensional prescribed curvature equation modeling the corneal shape. Bound Value Probl 1:1–19

    MathSciNet  MATH  Google Scholar 

  4. Okrasinski W, Płociniczak Ł (2012) A nonlinear mathematical model of the corneal shape. Nonlinear Anal Real World Appl 13:1498–1505

    MathSciNet  MATH  Google Scholar 

  5. Mahavier WT, Hunt J (2006) An alternative mathematical algorithm for the photo and video keratoscope. Nonlinear Anal Real World Appl 7:1223–1232

    MathSciNet  MATH  Google Scholar 

  6. Rosales MA, Aubry MJ, Olazagasti EL, Ibarra J, Tepichn E (2009) Anterior corneal profile with variable asphericity. Appl Opt 48:6594–6599

    Google Scholar 

  7. Anderson K, El-Sheikh A, Newson T (2004) Application of structural analysis to the mechanical behaviour of the cornea. J R Soc 1:3–15

    Google Scholar 

  8. Ahmed E (2010) Finite element modeling of corneal biomechanical behaviour. J Refract Surg 26:289–300

    Google Scholar 

  9. Iskander DR, Collins MJ, Davis B (2001) Optimal modeling of corneal surfaces by Zernike polynomials. IEEE Trans Biomed Eng 48:87–95

    Google Scholar 

  10. Schneider M, Iskander DR, Collins MJ (2009) Modeling corneal surfaces with rational functions for high-speed video keratoscopy data compression. IEEE Trans Biomed Eng 56:493–499

    Google Scholar 

  11. Urs R, Ho A, Manns F, Parel JM (2010) Age dependent Fourier model of the shape of the isolated ex vivo human crystalline lens. Vis Res 50:1041–1047

    Google Scholar 

  12. Bakaraju RC, Ehrmann K, Falk D, Ho A, Papas E (2010) Physical human model eye and methods of its use to analyse optical performance of soft contact lenses. Opt Express 18:16868–16882

    Google Scholar 

  13. Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater 2:522–533

    Google Scholar 

  14. Nee J (2010) Nonlinear integral equation from the BCS gap equations of superconductivity. Nonlinear Anal Real World Appl 11:190–197

    MathSciNet  MATH  Google Scholar 

  15. Trattler W, Majmudar P, Luchs JI, Swartz T (2010) Cornea handbook. Slack Incorporated, Thorofare

    Google Scholar 

  16. Płociniczak L, Okrasiński W, Nieto JJ, Domínguez O (2014) On a nonlinear boundary value problem modeling corneal shape. J Math Anal Appl 414:461–471

    MathSciNet  MATH  Google Scholar 

  17. Płociniczak L, Okrasiński W (2015) Nonlinear parameter identification in a corneal geometry model. Inverse Probl Sci Eng 23:443–456

    MathSciNet  MATH  Google Scholar 

  18. Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180(8):1434–1457

    MathSciNet  MATH  Google Scholar 

  19. Baymani M, Effati S, Niazmand H, Kerayechian A (2015) Artificial neural network method for solving the Navier–Stokes equations. Neural Comput Appl 26(4):765–773

    Google Scholar 

  20. Aquino G, Rubio JDJ, Pacheco J, Gutierrez GJ, Ochoa G, Balcazar R, Cruz DR, Garcia E, Novoa JF, Zacarias A (2020) Novel nonlinear hypothesis for the delta parallel robot modeling. IEEE Access 8:46324–46334

    Google Scholar 

  21. Fateh MF et al (2017) Biologically inspired computing framework for solving two-point boundary value problems using differential evolution. Neural Comput Appl 28(8):2165–2179

    Google Scholar 

  22. de Jesús Rubio J (2009) SOFMLS: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309

    Google Scholar 

  23. Majeed K et al (2017) A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system. Appl Soft Comput 56:420–435

    Google Scholar 

  24. Elias I, Rubio JDJ, Cruz DR, Ochoa G, Novoa JF, Martinez DI, Muñiz S, Balcazar R, Garcia E, Juarez CF (2020) Hessian with mini-batches for electrical demand prediction. Appl Sci 10(6):2036

    Google Scholar 

  25. Meda-Campaña JA (2018) On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access 6:31968–31973

    Google Scholar 

  26. Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016) Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 38:561–586

    Google Scholar 

  27. Umar M et al (2019) Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl Soft Comput 80:506–524

    Google Scholar 

  28. Raja MAZ, Ahmad I, Khan I, Syam MI, Wazwaz AM (2017) Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Front Inf Technol Electron Eng 18(4):464–484

    Google Scholar 

  29. Ahmad I et al (2019) Design of computational intelligent procedure for thermal analysis of porous fin model. Chin J Phys 59:641–655

    MathSciNet  Google Scholar 

  30. Mehmood A et al (2019) Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Appl Soft Comput 79:139–162

    Google Scholar 

  31. Raja MAZ, Samar R, Alaidarous ES, Shivanian E (2016) Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Appl Math Model 40(11–12):5964–5977

    MathSciNet  MATH  Google Scholar 

  32. Khan JA et al (2015) Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory. Connect Sci 27(4):377–396

    Google Scholar 

  33. Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect Sci 26(3):195–214

    Google Scholar 

  34. Yadav N, Yadav A, Kumar M, Kim JH (2017) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl 28(1):171–178

    Google Scholar 

  35. Raja MAZ (2014) Stochastic numerical treatment for solving Troesch’s problem. Inf Sci 279:860–873

    MathSciNet  MATH  Google Scholar 

  36. Ahmad I et al (2016) Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus 5(1):1866

    Google Scholar 

  37. Mehmood A, Zameer A, Aslam MS, Raja MAZ (2019) Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04197-7

    Article  Google Scholar 

  38. Sabir Z et al (2018) Neuro-heuristics for nonlinear singular Thomas–Fermi systems. Appl Soft Comput 65:152–169

    Google Scholar 

  39. Ahmad I et al (2017) Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput Appl 28(1):929–944

    Google Scholar 

  40. Ahmad I et al (2018) Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. Eur Phys J Plus 133(5):184

    Google Scholar 

  41. Raja MAZ, Shah FH, Syam MI (2018) Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput Appl 30(12):3651–3675

    Google Scholar 

  42. Raja MAZ, Asma K, Aslam MS (2017) Bio-inspired computational heuristics to study models of HIV infection of CD4 + T-cell. Int J Biomath 11(2):1850019. https://doi.org/10.1142/S1793524518500195

    Article  MathSciNet  MATH  Google Scholar 

  43. Munir A et al (2019) Intelligent computing approach to analyze the dynamics of wire coating with Oldroyd 8-constant fluid. Neural Comput Appl 31(3):751–775

    Google Scholar 

  44. Raja MAZ, Shah Z, Manzar MA, Ahmad I, Baleanu D (2018) A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory. Eur Phys J Plus 133(7):254

    Google Scholar 

  45. Yadav N, Yadav A, Deep K (2015) Artificial neural network technique for solution of nonlinear elliptic boundary value problems. In: Proceedings of fourth international conference on soft computing for problem solving, Springer India pp 113–121

  46. Raja MAZ, Samar R, Manzar MA, Shah SM (2017) Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation. Math Comput Simul 132:139–158

    MathSciNet  MATH  Google Scholar 

  47. Raja MAZ, Azad S, Shah SM (2017) Bio-inspired computational heuristics to study the boundary layer flow of the Falkner–Scan system with mass transfer and wall stretching. Appl Soft Comput 57:293–314

    Google Scholar 

  48. Raja MAZ, Khan JA, Chaudhary NI, Shivanian E (2016) Reliable numerical treatment of nonlinear singular Flierl–Petviashivili equations for unbounded domain using ANN, GAs, and SQP. Appl Soft Comput 38:617–636

    Google Scholar 

  49. Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10):3075–3093

    MathSciNet  MATH  Google Scholar 

  50. Raja MAZ, Khan JA, Shah SM, Samar R, Behloul D (2015) Comparison of three unsupervised neural network models for first Painlevé Transcendent. Neural Comput Appl 26(5):1055–1071

    Google Scholar 

  51. Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl 25(7–8):1585–1601

    Google Scholar 

  52. Hager WW, Zhang H (2006) A new active set algorithm for box constrained optimization. SIAM J Optim 17:526–557

    MathSciNet  MATH  Google Scholar 

  53. Achache M, Tabchouche N (2019) A full-Newton step feasible interior-point algorithm for monotone horizontal linear complementarity problems. Optim Lett 13(5):1039–1057

    MathSciNet  MATH  Google Scholar 

  54. Darvay Z, Rigó PR (2018) New interior-point algorithm for symmetric optimization based on a positive-asymptotic barrier function. Numer Funct Anal Optim 39(15):1705–1726

    MathSciNet  MATH  Google Scholar 

  55. Kirkpatrick S, Gelatt CD, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):498–516

    MathSciNet  MATH  Google Scholar 

  56. Cenny V (1985) Thermodynamical approach to the traveling salesman problem an efficient simulation algorithm. J Optim Theory Appl 45(1):41–51

    MathSciNet  Google Scholar 

  57. Vincent FY, Redi AP, Hidayat YA, Wibowo OJ (2017) A simulated annealing heuristic for the hybrid vehicle routing problem. Appl Soft Comput 53:119–132

    Google Scholar 

  58. Wei L, Zhang Z, Zhang D, Leung SC (2018) A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur J Oper Res 265(3):843–859

    MathSciNet  MATH  Google Scholar 

  59. Kadhim AZM, Ali SK, Kassim MM (2018) Solving machine scheduling problem under fuzzy processing time using the simulated annealing method. J Progr Res Math 14(1):2308–2317

    Google Scholar 

  60. Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach (ACM) 8(2):212–229

    MATH  Google Scholar 

  61. Yu WC (1979) Positive basis and a class of direct search techniques. Sci Sin 9:53–67

    MathSciNet  Google Scholar 

  62. Dolan ED, Lewis RM, Torczon VJ (2003) On the local convergence of pattern search. SIAM J Optim 14(2):567–583

    MathSciNet  MATH  Google Scholar 

  63. Lewis RM, Torczon V (1999) Pattern search algorithms for bound con-strained minimization. SIAM J Optim 9(4):1082–1099

    MathSciNet  MATH  Google Scholar 

  64. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Google Scholar 

  65. Araújo RDB, Coelho AA (2018) Hybridization of IMC and PID control structures based on filtered GPC using genetic algorithm. Comput Appl Math 37(2):2152–2165

    MathSciNet  MATH  Google Scholar 

  66. Shahdi-Pashaki S, Teymourian E, Tavakkoli-Moghaddam R (2018) New approach based on group technology for the consolidation problem in cloud computing-mathematical model and genetic algorithm. Comput Appl Math 37(1):693–718

    MathSciNet  MATH  Google Scholar 

  67. de Fatima Brondani M, Sausen ATZR, Sausen PS, Binelo MO (2018) Parameter estimation of lithium ion polymer battery mathematical model using genetic algorithm. Comput Appl Math 37:296–313

    MathSciNet  MATH  Google Scholar 

  68. Yuxin Z, Shenghong L, Feng J (2017) Overlapping community detection in complex networks using multi-objective evolutionary algorithm. Comput Appl Math 36(1):749–768

    MathSciNet  MATH  Google Scholar 

  69. Raja MAZ, Shah FH, Alaidarous ES, Syam MI (2017) Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl Soft Comput 52:605–629. https://doi.org/10.1016/j.asoc.2016.10.009

    Article  Google Scholar 

  70. Raja MAZ, Umar M, Sabir Z, Khan JA, Baleanu D (2018) A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur Phys J Plus 133(9):364. https://doi.org/10.1140/epjp/i2018-12153-4

    Article  Google Scholar 

  71. Ahmad I et al (2019) Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput Appl 31(12):9041–9059

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the anonymous referees for their careful reading of the manuscript and their comments, which greatly improved the final result.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Higinio Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Raja, M.A.Z., Ramos, H. et al. Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically. Neural Comput & Applic 33, 5753–5769 (2021). https://doi.org/10.1007/s00521-020-05355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05355-y

Keywords

Navigation