Abstract
This paper presents the application of an improved stochastic fractal search algorithm (ISFSA) for optimizing five single objectives of optimal power flow (OPF) problem and satisfying all constraints consisting of operating limits of electric components, power balance and load voltage magnitude limits. The proposed ISFSA is formed by implementing three improvements on the conventional stochastic fractal search algorithm (SFSA). The first improvement cancels one ineffective formula but keeps another one in diffusion process. The second improvement selects some worst solutions in the first update and some best solutions in the second update for producing new solutions. In the third improvement, a proposed technique is applied for carrying out the update processes. Comparisons of obtained results from three standard IEEE power systems indicate that the proposed method is superior to SFSA in terms of optimal solution quality, execution speed as well as success rate. The performance comparisons with other existing methods available in previous studies also lead to the conclusions that the proposed method can reach lower generation fuel cost, smaller total power losses, less amount of emission, better voltage profile and faster execution process. As a result, it can be recommended that the proposed ISFSA should be used for OPF problem in high-voltage power system field.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(F_{i}\) :
-
Fuel cost function of the ith thermal unit
- \(\phi_{i} ,\phi_{j}\) :
-
Phase angles of voltage at the ith bus and the jth bus
- \(a_{fi} ,b_{fi} ,c_{fi} ,d_{fi} ,e_{fi}\) :
-
Fuel cost coefficients of the ith thermal unit
- \(a_{fim} ,b_{fim} ,c_{fim}\) :
-
Fuel cost coefficients of the fuel type m of the ith thermal unit
- \(a_{ei} ,b_{ei} ,c_{ei} ,d_{ei} ,e_{ei}\) :
-
Emission function coefficients of the ith thermal unit
- \(FF_{s,j}\) :
-
Fitness function of new solution s at the jth diffusion
- \(FF_{s}^{new}\) :
-
Fitness function of the new solution s
- \(FF_{s}\) :
-
Fitness function of the sth retained solution
- \(FF_{average}\) :
-
Average fitness function of the whole population
- \(G_{ij} ,B_{ij}\) :
-
Conductance and susceptance of a branch connecting the ith bus and the jth bus
- \(K_{1} ,K_{2} ,K_{3} ,K_{4} ,K_{5}\) :
-
Penalty factors
- \(N_{fs}\) :
-
Number of fuel sources
- N VPZi :
-
Number of violated power zones of the ith thermal unit
- \(N_{bus}\) :
-
Number of buses in considered system
- \(N_{lb}\) :
-
Number of load buses
- \(N_{tb}\) :
-
Number of transformer buses
- \(N_{cb}\) :
-
Number of compensator buses
- \(N_{tl}\) :
-
Number of transmission lines in the considered power system
- \(N_{di}\) :
-
Maximum number of diffusion
- \(N_{ps}\) :
-
Population size
- \(P_{i}^{\hbox{min} } ,P_{i}^{\hbox{max} }\) :
-
Lower and upper limitations of real power of the ith thermal unit
- \(P_{i}\) :
-
Real power output of the ith thermal unit
- \(P_{im}^{\hbox{min} } ,P_{im}^{\hbox{max} }\) :
-
Lowest and the highest generations of the ith thermal unit corresponding to the mth fuel type
- \(P_{loadi} ,Q_{loadi}\) :
-
Real and unreal power of load at the ith bus
- \(P_{{i,VPZ_{j} }}^{\hbox{min} } ,P_{{i,VPZ_{j} }}^{\hbox{max} }\) :
-
Lower and upper bounds of the jth violated power zone of the ith thermal unit
- \(Q_{sci}^{\hbox{min} } ,Q_{sci}^{\hbox{max} }\) :
-
Minimum and maximum reactive power output of the capacitor banks at the ith bus
- \(Q_{i}^{\hbox{min} } ,Q_{i}^{\hbox{max} }\) :
-
Lower and upper limitations of reactive power of the ith thermal unit
- \(Q_{i} ,V_{i}\) :
-
Currently working unreal power and voltage magnitude of the ith thermal unit
- \(rand_{s,j}\) :
-
Random number for the solution s at the jth diffusion
- \(S_{br}^{\hbox{max} }\) :
-
Maximum apparent power flow of the brth transmission line
- \(Sol_{s,j}^{new}\) :
-
The sth new solution at the jth diffusion
- \(T_{i}^{\hbox{min} } ,T_{i}^{\hbox{max} }\) :
-
Minimum and maximum setting of tap changer at the ith bus
- \(V_{i}^{\hbox{min} } ,V_{i}^{\hbox{max} }\) :
-
Lower and upper limitations of voltage magnitude of the ith thermal unit
- VPZj :
-
The jth violated power zone
- \(V_{li}^{\hbox{min} } ,V_{li}^{\hbox{max} }\) :
-
Lower and upper bounds of operation voltage of the ith bus
- Iter, NIt :
-
Current iteration and the maximum number of iterations
- Pro s :
-
Ratio of rank of the sth solution to population size
- N cv :
-
Number of control variables
- βs, εs :
-
Random number within 0 and 1 for the sth solution
- ε :
-
Random number within 0 and 1
- EIL:
-
Emission improvement level
- FC:
-
Fuel cost
- FCIL:
-
Fuel cost improvement level
- OPF:
-
Optimal power flow
- TPL:
-
Total power losses
- TPLIL:
-
Total power loss improvement level
- VD:
-
Voltage deviation
- VDIL:
-
Voltage deviation improvement level
References
Momoh JA, Adapa R, El-Hawary ME (1993) A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Trans Power Syst 14(1):96–104. https://doi.org/10.1109/59.744492
Momoh JA, El-Hawary ME, Adapa R (1993) A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans Power Syst 14(1):105–111. https://doi.org/10.1109/59.744495
Yuryevich J, Wong KP (1999) Evolutionary programming based optimal power flow algorithm. IEEE Trans Power Syst 14(4):1245–1250. https://doi.org/10.1109/59.801880
Ongsakul W, Tantimaporn T (2006) Optimal power flow by improved evolutionary programming. Electr Power Compon Syst 34(1):79–95. https://doi.org/10.1080/15325000691001458
Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571. https://doi.org/10.1016/S0142-0615(01)00067-9
Attous DB, Labbi Y (2009) Particle swarm optimization based optimal power flow for units with non-smooth fuel cost functions. In: International conference on IEEE electrical and electronics engineering. ELECO 2009, pp I–377. https://doi.org/10.1109/ELECO.2009.5355329
Niknam T, Narimani MR, Aghaei J, Azizipanah-Abarghooee R (2012) Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gener Transm Distrib 6(6):515–527. https://doi.org/10.1049/iet-gtd.2011.0851
Vaisakh K, Srinivas LR, Meah K (2013) Genetic evolving ant direction particle swarm optimization algorithm for optimal power flow with non-smooth cost functions and statistical analysis. Appl Soft Comput 13(12):4579–4593. https://doi.org/10.1016/j.asoc.2013.07.002
Vo DN, Schegner P (2013) An improved particle swarm optimization for optimal power flow. In: Meta-heuristics optimization algorithms in engineering, business, economics, and finance. IGI Global, pp 1–40. https://doi.org/10.4018/978-1-4666-2086-5.ch001
Roberge V, Tarbouchi M, Okou F (2016) Optimal power flow based on parallel metaheuristics for graphics processing units. Electr Power Syst Res 140:344–353. https://doi.org/10.1016/j.epsr.2016.06.006
Younis U, Khaliq A, Saleem M (2018) Weights aggregated multi-objective particle swarm optimizer for optimal power flow considering the generation cost, emission, transmission loss and bus-voltage profile. Int J Innov Comput Inf Control 14(4):1423–1441. https://doi.org/10.24507/ijicic.14.04.1423
El-Fergany AA, Hasanien HM (2015) Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr Power Compon Syst 43(13):1548–1559. https://doi.org/10.1080/15325008.2015.1041625
El Ela AA, Abido MA, Spea SR (2010) Optimal power flow using differential evolution algorithm. Electr Power Syst Res 80(7):878–885. https://doi.org/10.1016/j.epsr.2009.12.018
Thitithamrongchai C, Eua-Arporn B (2007) Self-adaptive differential evolution based optimal power flow for units with non-smooth fuel cost functions. J Electr Syst 3(2):88–99
Sayah S, Zehar K (2008) Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers Manag 49(11):3036–3042. https://doi.org/10.1016/j.enconman.2008.06.014
Shaheen AM, El-Sehiemy RA, Farrag SM (2016) Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Gener Transm Distrib 10(7):1634–1647. https://doi.org/10.1049/iet-gtd.2015.0892
Biswas PP, Suganthan PN, Mallipeddi R, Amaratunga GA (2018) Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng Appl Artif Intell 68:81–100. https://doi.org/10.1016/j.engappai.2017.10.019
Saini A, Chaturvedi DK, Saxena AK (2006) Optimal power flow solution- a GA-fuzzy system approach. Int J Emerg Electr Power Syst 5(2):1–21. https://doi.org/10.2202/1553-779X.1091
Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236. https://doi.org/10.1109/TPWRS.2002.1007886
Kumari MS, Maheswarapu S (2010) Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. Int J Electr Power Energy Syst 32(6):736–742. https://doi.org/10.1016/j.ijepes.2010.01.010
Reddy SS, Bijwe PR, Abhyankar AR (2014) Faster evolutionary algorithm based optimal power flow using incremental variables. Int J Electr Power Energy Syst 54:198–210. https://doi.org/10.1016/j.ijepes.2013.07.019
Reddy SS, Bijwe PR (2016) Efficiency improvements in meta-heuristic algorithms to solve the optimal power flow problem. Int J Electr Power Energy Syst 82:288–302. https://doi.org/10.1016/j.ijepes.2016.03.028
Bhattacharya A, Chattopadhyay PK (2011) Application of biogeography-based optimisation to solve different optimal power flow problems. IET Gener Transm Distrib 5(1):70–80. https://doi.org/10.1049/iet-gtd.2010.0237
Kumar AR, Premalatha L (2015) Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization. Int J Electr Power Energy Syst 73:393–399. https://doi.org/10.1016/j.ijepes.2015.05.011
Nayak MR, Nayak CK, Rout PK (2012) Application of multi-objective teaching learning based optimization algorithm to optimal power flow problem. Procedia Technol 6:255–264. https://doi.org/10.1016/j.protcy.2012.10.031
Shabanpour-Haghighi A, Seifi AR, Niknam T (2014) A modified teaching–learning based optimization for multi-objective optimal power flow problem. Energy Convers Manag 77:597–607. https://doi.org/10.1016/j.enconman.2013.09.028
Pulluri H, Naresh R, Sharma V (2018) A solution network based on stud krill herd algorithm for optimal power flow problems. Soft Comput 22(1):159–176. https://doi.org/10.1007/s00500-016-2319-3
Chen G, Lu Z, Zhang Z (2018) Improved krill herd algorithm with novel constraint handling method for solving optimal power flow problems. Energies 11(1):76. https://doi.org/10.3390/en11010076
Ladumor DP, Trivedi IN, Bhesdadiya RH, Jangir P (2017) A grey wolf optimizer algorithm for Voltage Stability Enhancement. In: Third international conference on IEEE advances in electrical, electronics, information, communication and bio-informatics (AEEICB), pp 278–282. https://doi.org/10.1109/AEEICB.2017.7972429
Abdo M, Kamel S, Ebeed M, Yu J, Jurado F (2018) Solving non-smooth optimal power flow problems using a developed Grey Wolf Optimizer. Energies 11(7):1692. https://doi.org/10.3390/en11071692
Abido MA (2002) Optimal power flow using tabu search algorithm. Electr Power Compon Syst 30(5):469–483. https://doi.org/10.1080/15325000252888425
Roa-Sepulveda CA, Pavez-Lazo BJ (2003) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25(1):47–57. https://doi.org/10.1016/S0142-0615(02)00020-0
Niknam T, Narimani MR, Aghaei J, Tabatabaei S, Nayeripour M (2011) Modified honey bee mating optimisation to solve dynamic optimal power flow considering generator constraints. IET Gener Transm Distrib 5(10):989–1002. https://doi.org/10.1049/iet-gtd.2011.0055
Niknam T, rasoul Narimani M, Jabbari M, Malekpour AR (2011) A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 36(11):6420–6432. https://doi.org/10.1016/j.energy.2011.09.027
Ara AL, Kazemi A, Gahramani S, Behshad M (2012) Optimal reactive power flow using multi-objective mathematical programming. Sci Iran 19(6):1829–1836. https://doi.org/10.1016/j.scient.2012.07.010
Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95. https://doi.org/10.1016/j.enconman.2012.02.024
Adaryani MR, Karami A (2013) Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 53:219–230. https://doi.org/10.1016/j.ijepes.2013.04.021
Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Vahed AA (2014) Multi-objective optimal power flow considering the cost, emission, VD and TPL using multi-objective modified imperialist competitive algorithm. Energy 78:276–289. https://doi.org/10.1016/j.energy.2014.10.007
Le Anh TN, Vo DN, Ongsakul W, Vasant P, Ganesan T (2015) Cuckoo optimization algorithm for optimal power flow. In: Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems, pp 479–493. https://doi.org/10.1007/978-3-319-13359-1_37
Ghasemi M, Ghavidel S, Ghanbarian MM, Gitizadeh M (2015) Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm. Inf Sci 294:286–304. https://doi.org/10.1016/j.ins.2014.09.051
Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput 38:1012–1024. https://doi.org/10.1016/j.asoc.2015.10.057
El-Hana Bouchekara HR, Abido MA, Chaib AE (2016) Optimal power flow using an improved electromagnetism-like mechanism method. Electr Power Compon Syst 44(4):434–449. https://doi.org/10.1080/15325008.2015.1115919
Bouchekara HREH, Chaib AE, Abido MA, El-Sehiemy RA (2016) Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Appl Soft Comput 42:119–131. https://doi.org/10.1016/j.asoc.2016.01.041
Abaci K, Yamacli V (2016) Differential search algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 79:1–10. https://doi.org/10.1016/j.ijepes.2015.12.021
Mohamed AAA, Mohamed YS, El-Gaafary AA, Hemeida AM (2017) Optimal power flow using moth swarm algorithm. Electr Power Syst Res 142:190–206. https://doi.org/10.1016/j.epsr.2016.09.025
Yuan Y, Wu X, Wang P, Yuan X (2018) Application of improved bat algorithm in optimal power flow problem. Appl Intell 48(8):2304–2314. https://doi.org/10.1007/s10489-017-1081-2
El-Fergany AA, Hasanien HM (2018) Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons. Appl Soft Comput 64:307–316. https://doi.org/10.1016/j.asoc.2017.12.026
Attia AF, El Sehiemy RA, Hasanien HM (2018) Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int J Electr Power Energy Syst 99:331–343. https://doi.org/10.1016/j.ijepes.2018.01.024
Nguyen TT, Quynh NV, Van Dai L (2018) Improved firefly algorithm: a novel method for optimal operation of thermal generating units. Complexity. https://doi.org/10.1155/2018/7267593
Ahmed F, ALMOATAZ A (2018) Single-objective optimal power flow for electric power systems based on crow search algorithm. Arch Electr Eng 67(1):123–138. https://doi.org/10.24425/118996
Nguyen TT, Vo DN, Vu Quynh N, Van Dai L (2018) Modified cuckoo search algorithm: a novel method to minimize the fuel cost. Energies 11(6):1328. https://doi.org/10.3390/en11061328
Salimi H (2015) Stochastic fractal search: a powerful meta-heuristic algorithm. Knowl Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025
H Mosbah, M El-Hawary (2016) Power system tracking state estimation based on stochastic fractal search technique under sudden load changing conditions. In: IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–6. https://doi.org/10.1109/CCECE.2016.7726788
Khanam I, Parmar G (2017) Application of SFS algorithm in control of DC motor and comparative analysis. In: 4th IEEE Uttar Pradesh section international conference on electrical, computer and electronics (UPCON), pp 256–261. https://doi.org/10.1109/UPCON.2017.8251057
Alomoush MI, Oweis ZB (2018) Environmental-economic dispatch using stochastic fractal search algorithm. Int Trans Electr Energy Syst 28(5):e2530. https://doi.org/10.1002/etep.2530
Çelik E (2018) Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Comput Appl 30:1991–2002. https://doi.org/10.1007/s00521-017-3335-7
Dubey HM, Pandit M, Panigrahi BK (2018) An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm Evol Comput 38:12–34. https://doi.org/10.1016/j.swevo.2017.07.012
Nguyen TP, Vo DN (2018) A novel stochastic fractal search algorithm for optimal allocation of distributed generators in radial distribution systems. Appl Soft Comput 1:1. https://doi.org/10.1016/j.asoc.2018.06.020
Awad NH, Ali MZ, Suganthan PN, Jaser E (2016) Differential evolution with stochastic fractal search algorithm for global numerical optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp 3154–3161. https://doi.org/10.1109/CEC.2016.7744188
Padhy S, Panda S (2017) A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles. CAAI Trans Intell Technol 2(1):12–25. https://doi.org/10.1016/j.trit.2017.01.002
Lin J, Wang ZJ (2017) Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm. Nonlinear Dyn 90(2):1243–1255. https://doi.org/10.1007/s11071-017-3723-7
Mosbah H, El-Hawary M (2018) Power system static state estimation using modified stochastic fractal search technique. In: IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), pp 1–4. https://doi.org/10.1109/CCECE.2018.8447826
Nguyen TP, Vo ND (2018) Improved stochastic fractal search algorithm with chaos for optimal determination of location, size, and quantity of distributed generators in distribution systems. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3603-1
Das S, Suganthan PN (2011) Differential evolution—a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31. https://doi.org/10.1109/TEVC.2010.2059031
Zou D, Li S, Wang GG, Li Z, Ouyang H (2016) An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects. Appl Energy 181:375–390. https://doi.org/10.1016/j.apenergy.2016.08.067
Korda N, Szörényi B, Shuai L (2016) Distributed clustering of linear bandits in peer to peer networks. In: Proceedings of the 33rd international conference on machine learning, New York, USA, vol 48, pp 1301–1309
Li S, Karatzoglou A, Gentile C (2016) Collaborative filtering bandits. In: Proceedings of the 39th international ACM SIGIR conference on Research and Development in Information Retrieval, pp 539–548
Gentile C, Li S, Zappella G (2014) Online clustering of bandits. In: International conference on machine learning, Beijing, China, pp 757–765
Zimmerman RD, Murillo-Sánchez CE, Thomas RJ (2017) https://www.pserc.cornell.edu/matpower. Accessed 1 Jan 2018
Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F (2016) Online optimization methods for the quantification problem. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1625–1634. https://doi.org/10.1145/2939672.2939832
Li S (2016) The art of clustering bandits. Doctoral dissertation, University of Insubria
Nguyen TT, Vo DN (2019) Improved social spider optimization algorithm for optimal reactive power dispatch problem with different objectives. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04073-4
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest with other individuals or particles.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
See Tables 20, 21, 22, 23 and 24.
Rights and permissions
About this article
Cite this article
Nguyen, T.T., Nguyen, T.T., Duong, M.Q. et al. Optimal operation of transmission power networks by using improved stochastic fractal search algorithm. Neural Comput & Applic 32, 9129–9164 (2020). https://doi.org/10.1007/s00521-019-04425-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-019-04425-0