Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Design of hybrid nature-inspired heuristics with application to active noise control systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, nature-inspired computational intelligence is exploited for active noise control (ANC) systems using variants of particle swarm optimization (PSO) algorithm and its memetic combination with efficient local search technique based on active-set (AS), interior-point (IP), Nelder–Mead (NM) and sequential quadratic programming (SQP) algorithms. In ANC, filtered extended least mean square algorithm is normally used for finding the optimal parameters of the linear finite-impulse response filter, which is more likely to trap in local minima (LM). The issue of LM problem is effectively handled with competence of nature-inspired heuristics by developing four variants of memetic computing approaches based on PSO-NM, PSO-AS, PSO-IP, and PSO-SQP in order to adapt the design variables of ANC with linear and nonlinear primary and secondary paths by taking input noise interferences of pure sinusoidal, random and complex random types. The comparative studies of proposed schemes through statistical performance indices have established the worth of the schemes in terms of accuracy, convergence and complexity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shaaban M, Mohany A (2015) Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks. Exp Fluids 56(4):1–12

    Article  Google Scholar 

  2. Mellet C, Létourneaux F, Poisson F, Talotte C (2006) High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution. J Sound Vib 293:535–546

    Article  Google Scholar 

  3. George NV, Gonzalez A (2014) Convex combination of nonlinear adaptive filters for active noise control. Appl Acoust 76:157–161

    Article  Google Scholar 

  4. George NV, Panda G (2012) On the development of adaptive hybrid active noise control system for effective mitigation of nonlinear noise. Signal Process 92(2):509–516

    Article  Google Scholar 

  5. Kuo SM, Morgan DR (1996) Active noise control systems: algorithms and DSP implementations. Wiley, New York

    Google Scholar 

  6. Aslam MS, Raja MAZ (2015) A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process 107:433–443

    Article  Google Scholar 

  7. Akhtar MT, Nishihara A (2015) Data-reusing-based filtered-reference adaptive algorithms for active control of impulsive noise sources. Appl Acoust 92:18–26

    Article  Google Scholar 

  8. Matsuo MV, Seara R (2015) On the stochastic modeling of FxLMS-based narrowband active noise equalization systems. Signal Process 115:214–226

    Article  Google Scholar 

  9. Chang CY, Shyu KK (2003) Active noise cancellation with a fuzzy adaptive filtered-X algorithm. In: Proceedings of the Institution of Electrical Engineering—circuits, devices and systems, vol 150, no 5, pp 416–422

  10. Wang T, Gan W-S (2014) Stochastic analysis of FXLMS-based internal model control feedback active noise control systems. Signal Process 101:121–133

    Article  Google Scholar 

  11. Chang CY, Louh FB (2007) Enhancement of active noise control using neural based filtered-X algorithm. J Sound Vib 305(1/2):348–356

    Article  Google Scholar 

  12. George NV, Panda G (2013) Advances in active noise control: a survey, with emphasis on recent nonlinear techniques. Signal Process 93(2):363–377

    Article  Google Scholar 

  13. Narasimhan SV, Veena S, Lokesha H (2010) Variable step-size Griffiths’ algorithm for improved performance of feedforward/feedback active noise control. SIViP 4(3):309–317

    Article  MATH  Google Scholar 

  14. Narasimhan SV, Veena S (2013) New unbiased adaptive IIR filter: it’s robust and variable step-size versions and application to active noise control. Signal Image Video Process 7(1):197–207

    Article  Google Scholar 

  15. Pavithra S, Narasimhan SV (2013) Feedback active noise control based on forward–backward LMS predictor. SIViP 7(6):1083–1091

    Article  Google Scholar 

  16. Davari P, Hassanpour H (2009) Designing a new robust on-line secondary path modeling technique for feedforward active noise control systems. Signal Process 89(6):1195–1204

    Article  MATH  Google Scholar 

  17. George NV, Panda G (2012) A particle-swarm-optimization-based decentralized nonlinear active noise control system. IEEE Trans Instrum Meas 61(12):3378–3386

    Article  Google Scholar 

  18. Rout NK, Das DP, Panda G (2012) Particle swarm optimization based active noise control algorithm without secondary path identification. IEEE Trans Instrum Meas 61(2):554–563

    Article  Google Scholar 

  19. Chang C-Y, Chen D-R (2010) Active noise cancellation without secondary path identification by using an adaptive genetic algorithm. IEEE Trans Instrum Meas 59(9):2315–2327

    Article  Google Scholar 

  20. Pires EJS et al (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1–2):295–301

    Article  MATH  Google Scholar 

  21. Couceiro MS et al (2012) Introducing the fractional-order Darwinian PSO. Signal Image Video Process 6(3):343–350

    Article  Google Scholar 

  22. Gotmare A, Bhattacharjee SS, Patidar R, George NV (2017) Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evolut Comput 32:68–84

    Article  Google Scholar 

  23. Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5):e0122827

    Article  Google Scholar 

  24. Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44(1):23–45

    Article  Google Scholar 

  25. Črepinšek M, Liu S-H, Mernik M (2014) Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them. Appl Soft Comput 19:161–170

    Article  Google Scholar 

  26. Mongus D, Repnik B, Mernik M, Žalik B (2012) A hybrid evolutionary algorithm for tuning a cloth-simulation model. Appl Soft Comput 12(1):266–273

    Article  Google Scholar 

  27. Hrnčič D, Mernik M, Bryant BR, Javed F (2012) A memetic grammar inference algorithm for language learning. Appl Soft Comput 12(3):1006–1020

    Article  Google Scholar 

  28. Raja MAZ, Zameer A, Kiani AK, Shehzad A, Khan MAR (2016) Nature-inspired computational intelligence integration with Nelder–Mead method to solve nonlinear benchmark models. Neural Comput Appl. doi:10.1007/s00521-016-2523-1

    Article  Google Scholar 

  29. Raja MAZ, Khan JA, Chaudhary NI, Shivanian E (2016) Reliable numerical treatment of nonlinear singular Flierl–Petviashivili equations for unbounded domain using ANN, GAs, and SQP. Appl Soft Comput 38:617–636

    Article  Google Scholar 

  30. Baymani M, Effati S, Niazmand H, Kerayechian A (2015) Artificial neural network method for solving the Navier–Stokes equations. Neural Comput Appl 26(4):765–773

    Article  Google Scholar 

  31. Mansoori A, Effati S, Eshaghnezhad M (2017) An efficient recurrent neural network model for solving fuzzy non-linear programming problems. Appl Intell 46(2):308–327

    Article  Google Scholar 

  32. Effati S, Mansoori A, Eshaghnezhad M (2015) An efficient projection neural network for solving bilinear programming problems. Neurocomputing 168:1188–1197

    Article  Google Scholar 

  33. Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl 25(7–8):1585–1601

    Article  Google Scholar 

  34. Masood Z, Majeed K, Samar R, Raja MAZ (2016) Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems. Neurocomputing. doi:10.1016/j.neucom.2016.08.079

    Article  Google Scholar 

  35. Chaquet JM, Carmona EJ, Corral R (2012) Using genetic algorithms to improve the thermodynamic efficiency of gas turbines designed by traditional methods. Appl Soft Comput 12(11):3627–3635

    Article  Google Scholar 

  36. Chaquet JM, Carmona EJ (2012) Solving differential equations with fourier series and evolution strategies. Appl Soft Comput 12(9):3051–3062

    Article  Google Scholar 

  37. Raja MAZ, Shah FH, Tariq M, Ahmad I (2016) Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput Appl. doi:10.1007/s00521-016-2530-2

    Article  Google Scholar 

  38. Raja MAZ (2014) Stochastic numerical treatment for solving Troesch’s problem. Inf Sci 279:860–873

    Article  MathSciNet  MATH  Google Scholar 

  39. Raja MAZ, Niazi SA, Butt SA (2017) An intelligent computing technique to analyze the vibrational dynamics of rotating electrical machine. Neurocomputing 219:280–299

    Article  Google Scholar 

  40. Dahi ZAEM, Mezioud C, Draa A (2016) A quantum-inspired genetic algorithm for solving the antenna positioning problem. Swarm and Evolutionary Computation 31:24–63

    Article  Google Scholar 

  41. Dahi ZAEM, Mezioud C, Draa A (2016) On the efficiency of the binary flower pollination algorithm: application on the antenna positioning problem. Appl Soft Comput 47:395–414

    Article  Google Scholar 

  42. Draa A (2015) On the performances of the flower pollination algorithm—qualitative and quantitative analyses. Appl Soft Comput 34:349–371

    Article  Google Scholar 

  43. Raja MAZ, Khan MAR, Mahmood T, Farooq U, Chaudhary NI (2016) Design of bio-inspired computing technique for nanofluidics based on nonlinear Jeffery–Hamel flow equations. Can J Phys 94(5):474–489

    Article  Google Scholar 

  44. Ahmad I, Ahmad F, Raja MAZ, Ilyas H, Anwar N, Azad Z (2016) Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Comput Appl. doi:10.1007/s00521-016-2547-6

    Article  Google Scholar 

  45. Ahmad I, Raja MAZ, Bilal M, Ashraf F (2016) Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput Appl. doi:10.1007/s00521-016-2400-y

    Article  Google Scholar 

  46. Raja MAZ, Shah AA, Mehmood A, Chaudhary NI, Aslam MS (2016) Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput Appl. doi:10.1007/s00521-016-2677-x

    Article  Google Scholar 

  47. Kashkaria BS, Syam MI (2017) Evolutionary computational intelligence in solving a class of nonlinear Volterra–Fredholm integro-differential equations. J Comput Appl Math 311:314–323

    Article  MathSciNet  MATH  Google Scholar 

  48. Ahmad I, Raja MAZ, Bilal M, Ashraf F (2016) Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus 5(1):1866

    Article  Google Scholar 

  49. Azami H et al (2013) A hybrid evolutionary approach to segmentation of non-stationary signals. Digital Signal Process 23(4):1103–1114

    Article  MathSciNet  Google Scholar 

  50. Mahmood AF, Abd-Alsalam AM (2014) Automatic brain MRI slices classification using hybrid technique. Al-Rafidain Eng J 22(3):198–212

    Google Scholar 

  51. Madikeri SR (2014) A fast and scalable hybrid FA/PPCA-based framework for speaker recognition. Digital Signal Process 32:137–145

    Article  Google Scholar 

  52. Wu M-S (2014) Genetic algorithm based on discrete wavelet transformation for fractal image compression. J Vis Commun Image Represent 25(8):1835–1841

    Article  Google Scholar 

  53. Sam, “Another Particle Swarm Toolbox”, 01 Dec 2009 (Updated 01 Apr 2014), File ID: #25986, Version: 1.31

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ishtiaq Chaudhary.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there are no potential conflicts of interest.

Human and animals rights

All the authors of the manuscript declared that there is no research involving human participants and/or animal.

Informed consent

All the authors of the manuscript declared that there is no material that required informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Aslam, M.S., Chaudhary, N.I. et al. Design of hybrid nature-inspired heuristics with application to active noise control systems. Neural Comput & Applic 31, 2563–2591 (2019). https://doi.org/10.1007/s00521-017-3214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3214-2

Keywords

Navigation