Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A decision support model for group decision making with intuitionistic fuzzy linguistic preferences relations

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

As a new preference structure, the intuitionistic fuzzy linguistic preference relation (IFLPR) was introduced to efficiently cope with situations in which the membership degree and non-membership degree are represented as linguistic terms. For group decision making (GDM) problems with IFLPRs, two significant and challenging issues are individual consistency and group consensus before deriving the reliable priority weights of alternatives. In this paper, a novel decision support model is investigated to simultaneously deal with the individual consistency and group consensus for GDM with IFLPRs. First, the concepts of multiplicative consistency and weak transitivity for IFLPRs are introduced and followed by a discussion of their desirable properties. Then, a transformation approach is developed to convert the normalized intuitionistic fuzzy priority weights into multiplicative consistent IFLPR. Based on the distance of IFLPRs, the consistency index, individual consensus degree and group consensus degree for IFLPRs are further defined. In addition, two convergent automatic iterative algorithms are proposed in the investigated decision support model. The first algorithm is utilized to convert an unacceptable multiplicative consistent IFLPR to an acceptable one. The second algorithm can assist the group decision makers to achieve a predefined consensus level. The main characteristic of the investigated decision support model is that it guarantees each IFLPR is still acceptable multiplicative consistent when the predefined consensus level is achieved. Finally, several numerical examples are provided, and comparative analyses with existing approaches are performed to demonstrate the effectiveness and practicality of the investigated model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  2. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MATH  Google Scholar 

  3. Atanassov K (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33:37–46

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanassov K (2000) Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst 110:267–269

    Article  MathSciNet  MATH  Google Scholar 

  5. Bustince H, Burillo P (1996) Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst 79:403–405

    Article  MathSciNet  MATH  Google Scholar 

  6. Xia MM, Xu ZS (2010) Some new similarity measures for intuitionistic fuzzy values and their application in group decision making. J Syst Sci Syst Eng 19:430–452

    Article  Google Scholar 

  7. Wei GW (2011) Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst Appl 38:11671–11677

    Article  Google Scholar 

  8. Wu ZB, Xu JP (2016) Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65:28–40

    Article  Google Scholar 

  9. Jin FF, Pei LD, Chen HY, Zhou LG (2014) Interval-valued intuitionistic fuzzy continuous weighted entropy and its application to multi-criteria fuzzy group decision making. Knowl-Based Syst 59:132–141

    Article  Google Scholar 

  10. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  11. Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14:451–463

    Article  Google Scholar 

  12. Liu PD, Shi LL (2015) The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Comput Appl 26:457–471

    Article  Google Scholar 

  13. Herrera-Viedma E, Herrera F, Chiclana F, Luque M (2004) Some issues on consistency of fuzzy preference relations. Eur J Oper Res 154:98–109

    Article  MathSciNet  MATH  Google Scholar 

  14. Orlovsky SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1:155–167

    Article  MathSciNet  MATH  Google Scholar 

  15. Tanino T (1984) Fuzzy preference orderings in group decision making. Fuzzy Sets Syst 12:117–131

    Article  MathSciNet  MATH  Google Scholar 

  16. Nurmi H (1981) Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets Syst 6:249–259

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu ZS (2001) The least variance priority method (LVM) for fuzzy complementary judgment matrix. Syst Eng Theory Pract 21:93–96

    Google Scholar 

  18. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  19. Xu ZS (1999) Study on the relation between two classes of scales in AHP. Syst Eng Theory Pract 19:97–101

    Google Scholar 

  20. Chiclana F, Herrera F, Herrera-Viedma E (2001) Integrating multiplicative preference relations in a multipurpose decision-making based on fuzzy preference relations. Fuzzy Sets Syst 122:277–291

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu ZS (2002) A practical method for priority of interval number complementary judgment matrix. Oper Res Manag Sci 10:16–19

    Google Scholar 

  22. Gong ZW, Xu XX, Zhang HH, Azturk UA, Herrera-Viedma E, Xu C (2015) The consensus models with interval preference opinions and their economic interpretation. Omega 55:81–90

    Article  Google Scholar 

  23. Van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst 11:229–241

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang YM, Luo Y, Hua ZS (2008) On the extent analysis method for fuzzy AHP and its applications. Eur J Oper Res 186:735–747

    Article  MATH  Google Scholar 

  25. Xu ZS (2007) Intuitionistic preference relations and their application in group decision making. Inf Sci 177:2363–2379

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong YC, Herrera-Viedma E (2015) Consistency-driven automatic methodology to set interval numerical scales of 2-tuple linguistic term sets and its use in the linguistic GDM with preference relation. IEEE Trans Cybern 45:780–792

    Article  Google Scholar 

  27. Xu ZS (2005) Deviation measures of linguistic preference relations in group decision making. Omega 33:249–254

    Article  Google Scholar 

  28. Zhang Y, Ma H, Liu B, Liu J (2012) Group decision making with 2-tuple intuitionistic fuzzy linguistic preference relations. Soft Comput 16:1439–1446

    Article  MATH  Google Scholar 

  29. Zhu B, Xu ZS, Xu JP (2014) Deriving a ranking from hesitant fuzzy preference: relations under group decision making. IEEE Trans Cybern 44:1328–1337

    Article  Google Scholar 

  30. Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  31. Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  MATH  Google Scholar 

  32. He YD, He Z, Chen HY (2015) Intuitionistic fuzzy interaction Bonferroni means and its application to multiple attribute decision making. IEEE Trans Cybern 45:116–128

    Article  Google Scholar 

  33. Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybern 18:183–190

    Article  MATH  Google Scholar 

  34. Herrera F, Herrera-Viedma E, Verdegay JL (1996) Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets Syst 79:175–190

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu ZS (2004) Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf Sci 168:171–184

    Article  MATH  Google Scholar 

  36. Chu YC, Liu PD (2015) Some two-dimensional uncertain linguistic Heronian mean operators and their application in multiple-attribute decision making. Neural Comput Appl 26:1461–1480

    Article  Google Scholar 

  37. Zhang HM, Xu ZS (2005) Uncertain linguistic information based COWA and COWG operators and their applications. J PLA Univ Sci Technol 6:604–608

    Google Scholar 

  38. Zhou LG, Chen HY (2013) The induced linguistic continuous ordered weighted geometric operator and its application to group decision making. Comput Ind Eng 66:222–232

    Article  Google Scholar 

  39. Chen ZC, Liu PH, Pei Z (2015) An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int J Computational Intell Syst 8:747–760

    Article  Google Scholar 

  40. Xia MM, Xu ZS, Chen J (2013) Algorithms for improving consistency or consensus of reciprocal [0,1]-valued preference relations. Fuzzy Sets Syst 216:108–133

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu ZB, Xu JP (2012) A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decis Support Syst 52:757–767

    Article  Google Scholar 

  42. Zhang ZM, Wu C (2014) A decision support model for group decision making with hesitant multiplicative preference relations. Inf Sci 282:136–166

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu ZS, Liao HC (2015) A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowl Based Syst 80:131–142

    Article  Google Scholar 

  44. Chen HY, Zhou LG, Han B (2011) On compatibility of uncertain additive linguistic preference relations and its application in the group decision making. Knowl Based Syst 24:816–823

    Article  Google Scholar 

  45. Tao ZF, Liu X, Chen HY, Chen ZQ (2015) Group decision making with fuzzy linguistic preference relations via cooperative games method. Comput Ind Eng 83:184–192

    Article  Google Scholar 

  46. Zhang GQ, Dong YC, Xu YF (2014) Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf Fusion 17:46–55

    Article  Google Scholar 

  47. Gong ZW, Li LS, Zhou FX, Yao TX (2009) Goal programming approaches to obtain the priority vectors from the intuitionistic fuzzy preference relations. Comput Ind Eng 57:1187–1193

    Article  Google Scholar 

  48. Zhang ZM, Wu C (2014) On the use of multiplicative consistency in hesitant fuzzy linguistic preference relations. Knowl Based Syst 72:13–27

    Article  Google Scholar 

  49. Liao HC, Xu ZS (2014) Priorities of intuitionistic fuzzy preference relation based on multiplicative consistency. IEEE Trans Fuzzy Syst 22:1669–1681

    Article  Google Scholar 

  50. Zhang ZM, Wang C, Tian XD (2015) A decision support model for group decision making with hesitant fuzzy preference relations. Knowl Based Syst 86:77–101

    Article  Google Scholar 

  51. Chiclana F, Tapia Garcia JM, Del Moral MJ, Herrera-Viedma E (2013) A statistical comparative study of different similarity measures of consensus in group decision making. Inf Sci 221:110–123

    Article  MathSciNet  Google Scholar 

  52. Cabrerizo FJ, Ureña MR, Pedrycz W, Herrera-Viedma E (2014) Building consensus in group decision making with an allocation of information granularity. Fuzzy Sets Syst 255:115–127

    Article  MathSciNet  MATH  Google Scholar 

  53. Dong YC, Zhang HJ, Herrera-Viedma E (2016) Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors. Decis Support Syst 84:1–15

    Article  Google Scholar 

  54. Cabrerizo FJ, Chiclana F, Al-Hmouz R, Morfeq A, Balamash AS, Herrera-Viedma E (2015) Fuzzy decision making and consensus: challenges. J Intell Fuzzy Syst 29:1109–1118

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu B, Xu ZS (2014) Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Trans Fuzzy Syst 22:35–45

    Article  Google Scholar 

  56. Xu ZS (2004) EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations. Int J Uncertain Fuzziness Knowl Based Syst 12:791–810

    Article  MathSciNet  MATH  Google Scholar 

  57. Morente-Molinera JA, Pérez IJ, Ureña MR, Herrera-Viedma E (2015) On multi-granular fuzzy linguistic modelling in group decision making problems: a systematic review and future trends. Knowl Based Syst 74:49–60

    Article  Google Scholar 

  58. Wang ZJ (2013) Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations. Appl Math Model 37:6377–6388

    Article  MathSciNet  MATH  Google Scholar 

  59. Xu ZS (2000) On consistency of the weighted geometric mean complex judgment matrix in AHP. Eur J Oper Res 126:683–687

    Article  MATH  Google Scholar 

  60. Xu ZS, Wang H (2016) Managing multi-granularity linguistic information in qualitative group decision making: an overview. Granul Comput 1:21–35

    Article  Google Scholar 

  61. Mendel JM (2016) A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words. Granul Comput 1:59–69

    Article  Google Scholar 

  62. Dubois D, Prade H (2016) Bridging gaps between several forms of granular computing. Granul Comput 1:115–126

    Article  Google Scholar 

  63. Yao Y (2016) A triarchic theory of granular computing. Granul Comput 1:145–157

    Article  Google Scholar 

  64. Ciucci D (2016) Orthopairs and granular computing. Granul Comput 1:159–170

    Article  Google Scholar 

  65. Wilke G, Portmann E (2016) Granular computing as a basis of human-data interaction: a cognitive cities use case. Granul Comput 1:181–197

    Article  Google Scholar 

  66. Liu H, Gegov A, Cocea M (2016) Rule-based systems: a granular computing perspective. Granul Comput 1:259–274

    Article  Google Scholar 

  67. Xu ZS, Gou X (2017) An overview of interval-valued intuitionistic fuzzy information aggregations and applications. Granul Comput 2:13–39

    Article  Google Scholar 

  68. Das S, Kar S, Pal T (2017) Robust decision making using intuitionistic fuzzy numbers. Granul Comput 2:41–54

    Article  Google Scholar 

  69. Zhou X (2017) Membership grade mining of mutually inverse fuzzy implication propositions. Granul Comput 2:55–62

    Article  Google Scholar 

  70. Porcel C, Herrera-Viedma E (2010) Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowl Based Syst 23:32–39

    Article  Google Scholar 

  71. Cabrerizo FJ, Morente-Molinera JA, Pérez IJ, López-Gijón J, Herrera-Viedma E (2015) A decision support system to develop a quality management in academic digital libraries. Inf Sci 323:48–58

    Article  MathSciNet  Google Scholar 

  72. Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2010) A mobile decision support system for dynamic group decision making problems. IEEE Trans Syst Man Cybern Part A Syst Hum 40:1244–1256

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Nos. 91546108, 71371011, 71490725, 71501002), the National Key Research and Development Plan under Grant (No. 2016YFF0202604). The authors are thankful to the anonymous reviewers and the editor for their valuable comments and constructive suggestions that have led to an improved version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Jin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Appendix

Appendix

Proof of Theorem 1

First, we prove the necessary part. If IFLPR \( B = (b_{ij} )_{n \times n} \) is multiplicative consistent, by Definition 3, we have

$$ I(b_{ij\mu } )I(b_{jk\mu } )I(b_{ki\mu } ) = I(b_{ji\mu } )I(b_{ik\mu } )I(b_{kj\mu } ),\quad i,j,k \in N. $$

As \( b_{ij\mu } = b_{ji\nu } ,b_{ij\nu } = b_{ji\mu } ,i,j \in N \), one can get

$$ I(b_{ij\mu } )I(b_{kj\nu } )I(b_{ik\nu } ) = I(b_{ij\nu } )I(b_{kj\mu } )I(b_{ik\mu } ),\quad i,j,k \in N, $$
(33)

then

$$ \frac{{I(b_{ij\mu } )}}{{I(b_{ij\nu } )}} = \frac{{I(b_{ik\mu } )}}{{I(b_{ik\nu } )}} \cdot \frac{{I(b_{kj\mu } )}}{{I(b_{kj\nu } )}},\quad i,j,k \in N. $$
(34)

Therefore, it follows from Eq. (34) that

$$ \varPhi (b_{ij} ) = \varPhi (b_{ik} ) \cdot \varPhi (b_{kj} ),\quad i,j,k \in N. $$

Next, we prove the sufficient part. Since \( \varPhi (b_{ij} ) = \varPhi (b_{ik} ) \cdot \varPhi (b_{kj} ),i,j,k \in N \), and \( \varPhi (b_{ij} ) = \frac{{I(b_{ij\mu } )}}{{I(b_{ij\nu } )}} \), we have

$$ \frac{{I(b_{ij\mu } )}}{{I(b_{ij\nu } )}} = \frac{{I(b_{ik\mu } )}}{{I(b_{ik\nu } )}} \cdot \frac{{I(b_{kj\mu } )}}{{I(b_{kj\nu } )}},\quad i,j,k \in N, $$

then by reversing the aforesaid proof of the necessary condition, one can obtain that

$$ I(b_{ij\mu } )I(b_{jk\mu } )I(b_{ki\mu } ) = I(b_{ji\mu } )I(b_{ik\mu } )I(b_{kj\mu } ),\quad i,j,k \in N, $$

which means that \( B \) is multiplicative consistent. □

Proof of Theorem 2

Since \( B = (b_{ij} )_{n \times n} \) is a multiplicative consistent IFLPR, then we have \( \varPhi (b_{ij} ) = \varPhi (b_{ik} ) \cdot \varPhi (b_{kj} ),i,j,k \in N \). If \( \varPhi (b_{ik} ) \ge 1 \) and \( \varPhi (b_{kj} ) \ge 1 \), thus \( \varPhi (b_{ij} ) = \varPhi (b_{ik} ) \cdot \varPhi (b_{kj} ) \ge 1 \), for any \( i,j,k \in N \). By Definition 4, the proof of Theorem 2 is completed. □

Proof of Theorem 3

First, we prove that the matrix \( F = (f_{ij} )_{n \times n} \) is an IFLPR.

For any \( i,j \in N \), we have \( f_{ij\mu } = I^{ - 1} \left( {2\tau \sqrt {\omega_{i\mu } \omega_{j\nu } } } \right) = I^{ - 1} \left( {2\tau \sqrt {\omega_{j\nu } \omega_{i\mu } } } \right) = f_{ji\nu } \).

As \( \omega_{i\mu } ,\omega_{i\nu } \in [0,1],\omega_{i\mu } + \omega_{i\nu } \le 1,i \in N \), we have

$$ 0 \le \sqrt {\omega_{i\mu } \omega_{j\nu } } \le \frac{{\omega_{i\mu } + \omega_{j\nu } }}{2} \le \frac{1 + 1}{2} \le 1,\quad 0 \le \sqrt {\omega_{i\nu } \omega_{j\mu } } \le \frac{{\omega_{i\nu } + \omega_{j\mu } }}{2} \le \frac{1 + 1}{2} \le 1,\quad i,j \in N, $$

then

$$ 0 \le 2\tau \sqrt {\omega_{i\mu } \omega_{j\nu } } \le 2\tau \,{\text{and}}\,0 \le 2\tau \sqrt {\omega_{i\nu } \omega_{j\mu } } \le 2\tau ,\quad i,j \in N, $$

it follows that

$$ s_{0} \le I^{ - 1} \left( {2\tau \sqrt {\omega_{i\mu } \omega_{j\nu } } } \right) \le s_{2\tau } ,\quad s_{0} \le I^{ - 1} \left( {2\tau \sqrt {\omega_{i\nu } \omega_{j\mu } } } \right) \le s_{2\tau } ,\quad i,j \in N, $$

i.e.,

$$ s_{0} \le f_{ij\mu } \le s_{2\tau } \,{\text{and}}\,s_{0} \le f_{ij\nu } \le s_{2\tau } ,i,j \in N. $$
(35)

Moreover,

$$ \begin{aligned} I(f_{ij\mu } ) + I(f_{ij\nu } ) & = 2\tau \sqrt {\omega_{i\mu } \omega_{j\nu } } + 2\tau \sqrt {\omega_{i\nu } \omega_{j\mu } } \\ & \le 2\tau \times \frac{{\omega_{i\mu } + \omega_{j\nu } }}{2} + 2\tau \times \frac{{\omega_{i\nu } + \omega_{j\mu } }}{2} \\ & = \tau \times \left( {(\omega_{i\mu } + \omega_{i\nu } ) + (\omega_{j\mu } + \omega_{j\nu } )} \right) = 2\tau ,\quad i,j \in N, \\ \end{aligned} $$

that is

$$ f_{ij\mu } + f_{ij\nu } \le s_{2\tau } ,i,j \in N. $$
(36)

According to Definition 1, \( F = (f_{ij} )_{n \times n} \) is an IFLPR.

Next, we prove that the IFLPR \( F = (f_{ij} )_{n \times n} \) is multiplicative consistent.

For any \( i,j,k \in N \), one can get that

$$ \begin{aligned} \varPhi (f_{ik} ) \cdot \varPhi (f_{kj} ) & = \frac{{I(f_{ik\mu } )}}{{I(f_{ik\nu } )}} \cdot \frac{{I(f_{kj\mu } )}}{{I(f_{kj\nu } )}} = \frac{{2\tau \sqrt {\omega_{i\mu } \omega_{k\nu } } }}{{2\tau \sqrt {\omega_{i\nu } \omega_{k\mu } } }} \cdot \frac{{2\tau \sqrt {\omega_{k\mu } \omega_{j\nu } } }}{{2\tau \sqrt {\omega_{k\nu } \omega_{j\mu } } }} \\ & = \frac{{2\tau \sqrt {\omega_{i\mu } \omega_{j\nu } } }}{{2\tau \sqrt {\omega_{i\nu } \omega_{j\mu } } }} = \frac{{I(f_{ij\mu } )}}{{I(f_{ij\nu } )}} = \varPhi (f_{ij} ). \\ \end{aligned} $$
(37)

By Theorem 1, it is certified that IFLPR \( F = (f_{ij} )_{n \times n} \) is multiplicative consistent, which competes the proof of Theorem 3. □

Proof of Theorem 4

Since \( \tilde{d}_{ij}^{ - } ,\tilde{d}_{ij}^{ + } ,\tilde{e}_{ij}^{ - } ,\tilde{e}_{ij}^{ + } ,i,j \in N \) are the optimal deviation values and \( \tilde{\omega } = (\tilde{\omega }_{1} ,\tilde{\omega }_{2} , \ldots ,\tilde{\omega }_{n} )^{\rm T} \) is the optimal normalized intuitionistic fuzzy weight vector in Model 2, then for any \( i,j \in N \), we have

$$ \begin{array}{*{20}c} {\tilde{d}_{ij}^{ - } - \tilde{d}_{ij}^{ + } = 0.5(\ln \tilde{\omega }_{i\mu } + \ln \tilde{\omega }_{j\nu } ) + \ln 2\tau - \ln I(b_{ij\mu } ),\;} \\ {\tilde{e}_{ij}^{ - } - \tilde{e}_{ij}^{ + } = 0.5(\ln \tilde{\omega }_{i\nu } + \ln \tilde{\omega }_{j\mu } ) + \ln 2\tau - \ln I(b_{ij\nu } ),} \\ \end{array} $$

that is

$$ \begin{aligned} \ln I(b_{ij\mu } ) + \tilde{d}_{ij}^{ - } - \tilde{d}_{ij}^{ + } = 0.5(\ln \tilde{\omega }_{i\mu } + \ln \tilde{\omega }_{j\nu } ) + \ln 2\tau , \hfill \\ \ln I(b_{ij\nu } ) + \tilde{e}_{ij}^{ - } - \tilde{e}_{ij}^{ + } = 0.5(\ln \tilde{\omega }_{i\nu } + \ln \tilde{\omega }_{j\mu } ) + \ln 2\tau , \hfill \\ \end{aligned} $$

it follows that

$$ I(b_{ij\mu } ) \cdot \exp (\tilde{d}_{ij}^{ - } - \tilde{d}_{ij}^{ + } ) = 2\tau \sqrt {\tilde{\omega }_{i\mu } \tilde{\omega }_{j\nu } } ,\quad I(b_{ij\nu } ) \cdot \exp (\tilde{e}_{ij}^{ - } - \tilde{e}_{ij}^{ + } ) = 2\tau \sqrt {\tilde{\omega }_{i\nu } \tilde{\omega }_{j\mu } } ,\quad i \ne j, $$

i.e.,

$$ \begin{aligned} I^{ - 1} \left( {I(b_{ij\mu } ) \cdot \exp (\tilde{d}_{ij}^{ - } - \tilde{d}_{ij}^{ + } )} \right) = I^{ - 1} \left( {2\tau \sqrt {\tilde{\omega }_{i\mu } \tilde{\omega }_{j\nu } } } \right),\quad i \ne j, \hfill \\ I^{ - 1} \left( {I(b_{ij\nu } ) \cdot \exp (\tilde{e}_{ij}^{ - } - \tilde{e}_{ij}^{ + } )} \right) = I^{ - 1} \left( {2\tau \sqrt {\tilde{\omega }_{i\nu } \tilde{\omega }_{j\mu } } } \right),\quad i \ne j, \hfill \\ \end{aligned} $$

thus, from Eq. (17), one can get that

$$ \tilde{b}_{ij\mu } { = }I^{ - 1} \left( {2\tau \sqrt {\tilde{\omega }_{i\mu } \tilde{\omega }_{j\nu } } } \right),\quad \tilde{b}_{ij\nu } { = }I^{ - 1} \left( {2\tau \sqrt {\tilde{\omega }_{i\nu } \tilde{\omega }_{j\mu } } } \right),\quad i \ne j. $$

According to Corollary 1, \( \tilde{B} = (\tilde{b}_{ij} )_{n \times n} \) is a multiplicative consistent IFLPR, which completes the proof of Theorem 4. □

Proof of Theorem 6

(i) and (iii) are obvious. In the following, we prove that (ii) and (iv) are valid.

(ii) Since \( a_{ij\mu } = a_{ji\nu } ,a_{ij\nu } = a_{ji\mu } ,b_{ij\mu } = b_{ji\nu } ,b_{ij\nu } = b_{ji\mu } ,i,j \in N \), then

$$ \begin{aligned} d(A,B) = 0 & \Leftrightarrow \left| {\ln I(a_{ij\mu } ) - \ln I(b_{ij\mu } )} \right| + \left| {\ln I(a_{ij\nu } ) - \ln I(b_{ij\nu } )} \right| = 0,\quad i < j, \\ & \Leftrightarrow I(a_{ij\mu } ) = I(b_{ij\mu } ),I(a_{ij\nu } ) = I(b_{ij\nu } ),\quad i < j \\ & \Leftrightarrow I(a_{ij\mu } ) = I(b_{ij\mu } ),I(a_{ij\nu } ) = I(b_{ij\nu } ),\quad i,j \in N \\ & \Leftrightarrow a_{ij\mu } = b_{ij\mu } ,a_{ij\nu } = b_{ij\nu } ,\quad i,j \in N \\ & \Leftrightarrow A = B. \\ \end{aligned} $$

(iv) According to Eq. (18), we have

$$ \begin{aligned} d(A,B) & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(a_{ij\mu } ) - \ln I(b_{ij\mu } )} \right| + \left| {\ln I(a_{ij\nu } ) - \ln I(b_{ij\nu } )} \right|} \right)} \\ & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\left( {\ln I(a_{ij\mu } ) - \ln I(c_{ij\mu } )} \right) + \left( {\ln I(c_{ij\mu } ) - \ln I(b_{ij\mu } )} \right)} \right|} \right.} \\ & \left. {\quad + \left| {\left( {\ln I(a_{ij\nu } ) - \ln I(c_{ij\nu } )} \right) + \left( {\ln I(c_{ij\nu } ) - \ln I(b_{ij\nu } )} \right)} \right|} \right) \\ & \le \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(a_{ij\mu } ) - \ln I(c_{ij\mu } )} \right| + \left| {\ln I(c_{ij\mu } ) - \ln I(b_{ij\mu } )} \right|} \right.} \\ & \left. {\quad + \left| {\ln I(a_{ij\nu } ) - \ln I(c_{ij\nu } )} \right| + \left| {\ln I(c_{ij\nu } ) - \ln I(b_{ij\nu } )} \right|} \right) \\ & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(a_{ij\mu } ) - \ln I(c_{ij\mu } )} \right| + \left| {\ln I(c_{ij\mu } ) - \ln I(b_{ij\mu } )} \right|} \right)} \\ & \quad + \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(a_{ij\nu } ) - \ln I(c_{ij\nu } )} \right| + \left| {\ln I(c_{ij\nu } ) - \ln I(b_{ij\nu } )} \right|} \right)} \\ & = d(A,C) + d(C,B). \\ \end{aligned} $$

This completes the proof of Theorem 6. □

Proof of Theorem 7

Let \( d_{ij}^{(t) - } ,d_{ij}^{(t) + } ,e_{ij}^{(t) - } \) and \( e_{ij}^{(t) + } ,i,j \in N \) be the deviation variables and \( \omega = (\omega_{1}^{(t)} ,\omega_{2}^{(t)} , \ldots ,\omega_{n}^{(t)} )^{\rm T} \) be the normalized intuitionistic fuzzy weight vector in Model 2 for \( B^{(t)} \), then for each \( t \), we have

$$ d_{ij}^{(t) - } - d_{ij}^{(t) + } = 0.5(\ln \omega_{i\mu }^{(t)} + \ln \omega_{j\nu }^{(t)} ) + \ln 2\tau - \ln I(b_{ij\mu }^{(t)} ),\quad i < j, $$
(38)
$$ e_{ij}^{(t) - } - e_{ij}^{(t) + } = 0.5(\ln \omega_{i\nu }^{(t)} + \ln \omega_{j\mu }^{(t)} ) + \ln 2\tau - \ln I(b_{ij\nu }^{(t)} ),\quad i < j, $$
(39)

Since \( d_{ij}^{(t) - } \ge 0,d_{ij}^{(t) + } \ge 0,e_{ij}^{(t) - } \ge 0,e_{ij}^{(t) + } \ge 0 \) and \( d_{ij}^{(t) - } \cdot d_{ij}^{(t) + } = 0,e_{ij}^{(t) - } \cdot e_{ij}^{(t) + } = 0,i,j \in N \), for each \( t \), then

$$ d_{ij}^{(t) - } + d_{ij}^{(t) + } = \left| {d_{ij}^{(t) + } - d_{ij}^{(t) - } } \right|,e_{ij}^{(t) - } + e_{ij}^{(t) + } = \left| {e_{ij}^{(t) + } - e_{ij}^{(t) - } } \right|,\quad i,j \in N. $$
(40)

Assume that \( \tilde{\omega }^{(t)} = (\tilde{\omega }_{1}^{(t)} ,\tilde{\omega }_{2}^{(t)} , \ldots ,\tilde{\omega }_{n}^{(t)} )^{\rm T} \) is the optimal normalized intuitionistic fuzzy weight vector, \( \tilde{d}_{ij}^{(t) - } ,\tilde{d}_{ij}^{(t) + } ,\tilde{e}_{ij}^{(t) - } ,\tilde{e}_{ij}^{(t) + } ,i,j \in N \) are the optimal deviation values in Model 2 \( B^{(t)} \). Since \( \tilde{B}^{(t)} \) is a multiplicative consistent IFLPR, based on Theorem 4, we have

$$ I(\tilde{b}_{ij\mu }^{(t)} ) = 2\tau \sqrt {\tilde{\omega }_{i\mu }^{(t)} \tilde{\omega }_{j\nu }^{(t)} } ,\;I(\tilde{b}_{ij\nu }^{(t)} ) = 2\tau \sqrt {\tilde{\omega }_{i\nu }^{(t)} \tilde{\omega }_{j\mu }^{(t)} } ,\quad i \ne j,\quad {\text{for}}\,{\text{each}}\,t, $$

i.e.,

$$ \ln I(\tilde{b}_{ij\mu }^{(t)} ) = 0.5(\ln \tilde{\omega }_{i\mu }^{(t)} + \ln \tilde{\omega }_{j\nu }^{(t)} ) + \ln 2\tau ,\quad \ln I(\tilde{b}_{ij\nu }^{(t)} ) = 0.5(\ln \tilde{\omega }_{i\nu }^{(t)} + \ln \tilde{\omega }_{j\mu }^{(t)} ) + \ln 2\tau ,\quad i \ne j. $$
(41)

According to Eq. (20), for each \( t \), we have

$$ \ln I(\tilde{b}_{ij\mu }^{(t)} ) - \ln I(b_{ij\mu }^{(t)} ) = \tilde{d}_{ij}^{(t) - } - \tilde{d}_{ij}^{(t) + } ,\quad \ln I(\tilde{b}_{ij\nu }^{(t)} ) - \ln I(b_{ij\nu }^{(t)} ) = \tilde{e}_{ij}^{(t) - } - \tilde{e}_{ij}^{(t) + } ,\quad i \ne j. $$
(42)

As \( \tilde{d}_{ij}^{(t + 1) - } ,\tilde{d}_{ij}^{(t + 1) + } ,\tilde{e}_{ij}^{(t + 1) - } ,\tilde{e}_{ij}^{(t + 1) + } ,i,j \in N \) are the smallest deviation variables respect to IFLPR \( B^{(t + 1)} \) in Model 2, by using Eqs. (38)–(40), one can obtain that

$$ \begin{aligned} & \sum\limits_{i < j} {\left( {\tilde{d}_{ij}^{(t + 1) - } + \tilde{d}_{ij}^{(t + 1) + } + \tilde{e}_{ij}^{(t + 1) - } + \tilde{e}_{ij}^{(t + 1) + } } \right)} \\ & \quad \le \sum\limits_{i < j} {\left( {d_{ij}^{(t + 1) - } + d_{ij}^{(t + 1) + } + e_{ij}^{(t + 1) - } + e_{ij}^{(t + 1) + } } \right)} \\ & \quad = \sum\limits_{i < j} {\left( {\left| {d_{ij}^{(t + 1) - } - d_{ij}^{(t + 1) + } } \right| + \left| {e_{ij}^{(t + 1) - } - e_{ij}^{(t + 1) + } } \right|} \right)} \\ & \quad = \sum\limits_{i < j} {\left( {\left| {0.5(\ln \omega_{i\mu }^{(t + 1)} + \ln \omega_{j\nu }^{(t + 1)} ) + \ln 2\tau - \ln I(b_{ij\mu }^{(t + 1)} )} \right|} \right.} \\ & \quad \quad \left. { + \left| {0.5(\ln \omega_{i\nu }^{(t + 1)} + \ln \omega_{j\mu }^{(t + 1)} ) + \ln 2\tau - \ln I(b_{ij\nu }^{(t + 1)} )} \right|} \right). \\ \end{aligned} $$

Let \( \omega_{i}^{(t + 1)} = \tilde{\omega }_{i}^{(t)} ,i \in N \), it follows that

$$ \begin{aligned} & \sum\limits_{i < j} {\left( {\tilde{d}_{ij}^{(t + 1) - } + \tilde{d}_{ij}^{(t + 1) + } + \tilde{e}_{ij}^{(t + 1) - } + \tilde{e}_{ij}^{(t + 1) + } } \right)} \\ & \quad \le \sum\limits_{i < j} {\left( {\left| {0.5(\ln \tilde{\omega }_{i\mu }^{(t)} + \ln \tilde{\omega }_{j\nu }^{(t)} ) + \ln 2\tau - \ln I(b_{ij\mu }^{(t + 1)} )} \right|} \right.} \\ & \quad \quad \left. { + \left| {0.5(\ln \tilde{\omega }_{i\nu }^{(t)} + \ln \tilde{\omega }_{j\mu }^{(t)} ) + \ln 2\tau - \ln I(b_{ij\nu }^{(t + 1)} )} \right|} \right) \\ & \quad = \sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu }^{(t)} ) - \ln I(b_{ij\mu }^{(t + 1)} )} \right| + \left| {\ln I(\tilde{b}_{ij\nu }^{(t)} ) - \ln I(b_{ij\nu }^{(t + 1)} )} \right|} \right)} . \\ \end{aligned} $$
(43)

In addition, from Eq. (22), we have

$$ \ln I(b_{ij\mu }^{(t + 1)} ) = (1 - \theta )\ln I(b_{ij\mu }^{(t)} ) + \theta \ln I(\tilde{b}_{ij\mu }^{(t)} ),\quad \ln I(b_{ij\nu }^{(t + 1)} ) = (1 - \theta )\ln I(b_{ij\nu }^{(t)} ) + \theta \ln I(\tilde{b}_{ij\nu }^{(t)} ),\quad i \ne j. $$
(44)

Therefore, by using Eqs. (40)–(44), for each t, we can get

$$ \begin{aligned} {\text{CI}}(B^{(t + 1)} ) & = \frac{1}{\tau n(n - 1)\ln 2}\sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu }^{(t + 1)} ) - \ln I(b_{ij\mu }^{(t + 1)} )} \right| + \left| {\ln I(\tilde{b}_{ij\nu }^{(t + 1)} ) - \ln I(b_{ij\nu }^{(t + 1)} )} \right|} \right)} \\ & = \frac{1}{\tau n(n - 1)\ln 2}\sum\limits_{i < j} {\left( {\left| {\tilde{d}_{ij}^{(t + 1) - } - \tilde{d}_{ij}^{(t + 1) + } } \right| + \left| {\tilde{e}_{ij}^{(t + 1) - } - \tilde{e}_{ij}^{(t + 1) + } } \right|} \right)} \\ & = \frac{1}{\tau n(n - 1)\ln 2}\sum\limits_{i < j} {\left( {\tilde{d}_{ij}^{(t + 1) - } + \tilde{d}_{ij}^{(t + 1) + } + \tilde{e}_{ij}^{(t + 1) - } + \tilde{e}_{ij}^{(t + 1) + } } \right)} \\ & \le \frac{1}{\tau n(n - 1)\ln 2}\sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu }^{(t)} - \ln I(b_{ij\mu }^{(t + 1)} )} \right| + \left| {\ln I(\tilde{b}_{ij\nu }^{(t)} ) - \ln I(b_{ij\nu }^{(t + 1)} )} \right|} \right)} \\ & = \frac{1}{\tau n(n - 1)\ln 2}\sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu }^{(t)} - (1 - \theta )\ln I(b_{ij\mu }^{(t)} ) - \theta \ln I(\tilde{b}_{ij\mu }^{(t)} )} \right|} \right.} \\ & \quad + \left. {\left| {\ln I(\tilde{b}_{ij\nu }^{(t)} ) - (1 - \theta )\ln I(b_{ij\nu }^{(t)} ) - \theta \ln I(\tilde{b}_{ij\nu }^{(t)} )} \right|} \right) \\ & = (1 - \theta ) \cdot \frac{1}{\tau n(n - 1)\ln 2}\sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu }^{(t)} - \ln I(b_{ij\mu }^{(t)} )} \right| + \left| {\ln I(\tilde{b}_{ij\nu }^{(t)} ) - \ln I(b_{ij\nu }^{(t)} )} \right|} \right)} \\ & = (1 - \theta ) \cdot {\text{CI}}(B^{(t)} ) < {\text{CI}}(B^{(t)} ). \\ \end{aligned} $$
(45)

Furthermore, by Eq. (45), we have

$$ \mathop {\lim }\limits_{t \to + \infty } {\text{CI}}(B^{(t)} ) \le \mathop {\lim }\limits_{t \to + \infty } (1 - \theta ){\text{CI}}(B^{(t - 1)} ) \le \mathop {\lim }\limits_{t \to + \infty } (1 - \theta )^{2} {\text{CI}}(B^{(t - 2)} ) \le \ldots \le \mathop {\lim }\limits_{t \to + \infty } (1 - \theta )^{t} {\text{CI}}(B^{(0)} ) = 0. $$

Since \( {\text{CI}}(B^{(t)} ) \ge 0 \) for each \( t \), then \( \mathop {\lim }\limits_{t \to + \infty } {\text{CI}}(B^{(t)} ) = 0 \).

This statement completes the proof of Theorem 7. □

Proof of Theorem 8

Since \( B_{k} = \left( {b_{ij,k} } \right)_{n \times n} (k \in M) \) be a collection of IFLPRs, according to Definition 1, for any \( i,j \in N,k \in M \), we have \( b_{ij\mu ,k} = b_{ji\nu ,k} ,b_{ij\nu ,k} = b_{ji\mu ,k} ,b_{ij\mu ,k} + b_{ij\nu ,k} \le s_{2\tau } \), and then

$$ b_{ij\mu ,c} = I^{ - 1} \left( {\prod\limits_{k = 1}^{m} {\left( {I(b_{ij\mu ,k} )} \right)^{{\lambda_{k} }} } } \right) = I^{ - 1} \left( {\prod\limits_{k = 1}^{m} {\left( {I(b_{ji\nu ,k} )} \right)^{{\lambda_{k} }} } } \right) = b_{ji\nu ,c} . $$

From Eq. (26), we have

$$ I(b_{ij\mu ,c} ) = \prod\limits_{k = 1}^{m} {\left( {I(b_{ij\mu ,k} )} \right)^{{\lambda_{k} }} } ,\quad I(b_{ij\nu ,c} ) = \prod\limits_{k = 1}^{m} {\left( {I(b_{ij\nu ,k} )} \right)^{{\lambda_{k} }} } ,\quad i,j \in N. $$
(46)

As \( I(b_{ij\mu ,k} ),I(b_{ij\nu ,k} ) \in [0,2\tau ],i,j \in N,k \in M \), using the Lemma 1, we have

$$ \begin{aligned} 0 \le I(b_{ij\mu ,c} ) & = \prod\limits_{k = 1}^{m} {\left( {I(b_{ij\mu ,k} )} \right)^{{\lambda_{k} }} } \le \sum\limits_{k = 1}^{m} {\lambda_{k} I(b_{ij\mu ,k} )} \le 2\tau \cdot \sum\limits_{k = 1}^{m} {\lambda_{k} } = 2\tau , \\ 0 \le I(b_{ij\nu ,c} ) & = \prod\limits_{k = 1}^{m} {\left( {I(b_{ij\nu ,k} )} \right)^{{\lambda_{k} }} } \le \sum\limits_{k = 1}^{m} {\lambda_{k} I(b_{ij\nu ,k} )} \le 2\tau \cdot \sum\limits_{k = 1}^{m} {\lambda_{k} } = 2\tau , \\ \end{aligned} $$

it follows that

$$ s_{0} \le b_{ij\mu ,c} \le s_{2\tau } \,{\text{and}}\,s_{0} \le b_{ij\nu ,c} \le s_{2\tau } ,\quad i,j \in N. $$
(47)

Furthermore, since \( I(b_{ij\mu ,k} ) + I(b_{ij\nu ,k} ) \in [0,2\tau ],i,j \in N,k \in M \), by Lemma 1, we have

$$ \begin{aligned} I(b_{ij\mu ,c} ) + I(b_{ij\nu ,c} ) & = \prod\limits_{k = 1}^{m} {\left( {I(b_{ij\mu ,k} )} \right)^{{\lambda_{k} }} } + \prod\limits_{k = 1}^{m} {\left( {I(b_{ij\nu ,k} )} \right)^{{\lambda_{k} }} } \\ & \le \sum\limits_{k = 1}^{m} {\lambda_{k} I(b_{ij\mu ,k} )} + \sum\limits_{k = 1}^{m} {\lambda_{k} I(b_{ij\nu ,k} )} \\ & = \sum\limits_{k = 1}^{m} {\lambda_{k} \left( {I(b_{ij\mu ,k} ) + I(b_{ij\nu ,k} )} \right)} \\ & = \sum\limits_{k = 1}^{m} {(\lambda_{k} \cdot 2\tau )} = 2\tau , \\ \end{aligned} $$

i.e.,

$$ b_{ij\mu ,c} + b_{ij\nu ,c} \le s_{2\tau } ,\quad i,j \in N. $$
(48)

According to Definition 1, it is certified that \( B_{c} = \left( {b_{ij,c} } \right)_{n \times n} \) is an IFLPR, which competes the proof of Theorem 8. □

Proof of Theorem 9

Suppose that \( \tilde{d}_{ij,k}^{ - } ,\tilde{d}_{ij,k}^{ + } ,\tilde{e}_{ij,k}^{ - } ,\tilde{e}_{ij,k}^{ + } ,i,j \in N,k \in M \) and \( \tilde{d}_{ij,c}^{ - } ,\tilde{d}_{ij,c}^{ + } ,\tilde{e}_{ij,c}^{ - } , \)\( \tilde{e}_{ij,c}^{ + } ,i,j \in N \) be the optimal deviation values of Model 3 and Model 4, respectively, and then

$$ \tilde{d}_{ij,c}^{ - } = \sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{d}_{ij,k}^{ - } } ,\tilde{d}_{ij,c}^{ + } = \sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{d}_{ij,k}^{ + } } ,\tilde{e}_{ij,c}^{ - } = \sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{e}_{ij,k}^{ - } } \,{\text{and}}\,\tilde{e}_{ij,c}^{ + } = \sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{e}_{ij,k}^{ + } } . $$
(49)

Let \( \tilde{B}_{c} = (\tilde{b}_{ij,c} )_{n \times n} = (\langle \tilde{b}_{ij\mu ,c} ,\tilde{b}_{ij\nu ,c} \rangle )_{n \times n} \) and \( \tilde{B}_{k} = (\tilde{b}_{ij,k} )_{n \times n} = (\langle \tilde{b}_{ij\mu ,k} ,\tilde{b}_{ij\nu ,k} \rangle )_{n \times n} ,k \in M \), where

$$ \tilde{b}_{ij\mu ,k} = I^{ - 1} \left( {I(b_{ij\mu ,k} ) \cdot \exp (\tilde{d}_{ij,k}^{ - } - \tilde{d}_{ij,k}^{ + } )} \right),\quad \tilde{b}_{ij\nu ,k} = I^{ - 1} \left( {I(b_{ij\nu ,k} ) \cdot \exp (\tilde{e}_{ij,k}^{ - } - \tilde{e}_{ij,k}^{ + } )} \right),\quad i,j \in N,k \in M, $$
(50)
$$ \tilde{b}_{ij\mu ,c} = I^{ - 1} \left( {I(b_{ij\mu ,c} ) \cdot \exp (\tilde{d}_{ij,c}^{ - } - \tilde{d}_{ij,c}^{ + } )} \right),\quad \tilde{b}_{ij\nu ,c} = I^{ - 1} \left( {I(b_{ij\nu ,c} ) \cdot \exp (\tilde{e}_{ij,c}^{ - } - \tilde{e}_{ij,c}^{ + } )} \right),\quad i,j \in N. $$
(51)

According to Theorem 4, one can obtain that \( \tilde{B}_{k} ,k \in M \) and \( \tilde{B}_{c} \) are multiplicative consistent IFLPRs.

From Eqs. (50) and (51), we have

$$ \begin{aligned} I(\tilde{b}_{ij\mu ,k} ) & = I(b_{ij\mu ,k} ) \cdot \exp (\tilde{d}_{ij,k}^{ - } - \tilde{d}_{ij,k}^{ + } ),\quad I(\tilde{b}_{ij\nu ,k} ) = I(b_{ij\nu ,k} ) \cdot \exp (\tilde{e}_{ij,k}^{ - } - \tilde{e}_{ij,k}^{ + } ),\quad i,j \in N,k \in M, \\ I(\tilde{b}_{ij\mu ,c} ) & = I(b_{ij\mu ,c} ) \cdot \exp (\tilde{d}_{ij,c}^{ - } - \tilde{d}_{ij,c}^{ + } ),\quad I(\tilde{b}_{ij\nu ,c} ) = I(b_{ij\nu ,c} ) \cdot \exp (\tilde{e}_{ij,c}^{ - } - \tilde{e}_{ij,c}^{ + } ),\quad i,j \in N, \\ \end{aligned} $$

it follows that

$$ \ln I(\tilde{b}_{ij\mu ,k} ) - \ln I(b_{ij\mu ,k} ) = \tilde{d}_{ij,k}^{ - } - \tilde{d}_{ij,k}^{ + } ,\quad \ln I(\tilde{b}_{ij\nu ,k} ) - \ln I(b_{ij\nu ,k} ) = \tilde{e}_{ij,k}^{ - } - \tilde{e}_{ij,k}^{ + } ,\quad i,j \in N,\quad k \in M, $$
(52)
$$ \ln I(\tilde{b}_{ij\mu ,c} ) - \ln I(b_{ij\mu ,c} ) = \tilde{d}_{ij,c}^{ - } - \tilde{d}_{ij,c}^{ + } ,\quad \ln I(\tilde{b}_{ij\nu ,c} ) - \ln I(b_{ij\nu ,c} ) = \tilde{e}_{ij,c}^{ - } - \tilde{e}_{ij,c}^{ + } ,\quad i,j \in N. $$
(53)

Since \( {\text{CI}}(B_{k} ) \le \overline{\text{CI}} ,k \in M \), by Eqs. (49), (52) and (53), we have

$$ \begin{aligned} {\text{CI}}(B_{c} ) & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu ,c} ) - \ln I(b_{ij\mu ,c} )} \right| + \left| {\ln I(\tilde{b}_{ij\nu ,c} ) - \ln I(b_{ij\nu ,c} )} \right|} \right)} \\ & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\tilde{d}_{ij,c}^{ - } - \tilde{d}_{ij,c}^{ + } } \right| + \left| {\tilde{e}_{ij,c}^{ - } - \tilde{e}_{ij,c}^{ + } } \right|} \right)} \\ & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{d}_{ij,k}^{ - } } - \sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{d}_{ij,k}^{ + } } } \right| + \left| {\sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{e}_{ij,k}^{ - } } - \sum\limits_{k = 1}^{m} {\lambda_{k} \tilde{e}_{ij,k}^{ + } } } \right|} \right)} \\ & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\sum\limits_{k = 1}^{m} {\lambda_{k} (\tilde{d}_{ij,k}^{ - } - \tilde{d}_{ij,k}^{ + } )} } \right| + \left| {\sum\limits_{k = 1}^{m} {\lambda_{k} (\tilde{e}_{ij,k}^{ - } - \tilde{e}_{ij,k}^{ + } )} } \right|} \right)} \\ & \le \sum\limits_{k = 1}^{m} {\lambda_{k} \left( {\frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\tilde{d}_{ij,k}^{ - } - \tilde{d}_{ij,k}^{ + } } \right| + \left| {\tilde{e}_{ij,k}^{ - } - \tilde{e}_{ij,k}^{ + } } \right|} \right)} } \right)} \\ & = \sum\limits_{k = 1}^{m} {\lambda_{k} \left( {\frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(\tilde{b}_{ij\mu ,k} ) - \ln I(b_{ij\mu ,k} )} \right| + \left| {\ln I(\tilde{b}_{ij\nu ,k} ) - \ln I(b_{ij\nu ,k} )} \right|} \right)} } \right)} \\ & = \sum\limits_{k = 1}^{m} {\lambda_{k} \cdot {\text{CI}}(B_{k} )} \\ & \le \sum\limits_{k = 1}^{m} {\lambda_{k} \cdot \mathop {\hbox{max} }\limits_{1 \le k \le m} \{ {\text{CI}}(B_{k} )\} } = \mathop {\hbox{max} }\limits_{1 \le k \le m} \{ {\text{CI}}(B_{k} )\} . \\ \end{aligned} $$
(54)

Therefore, we complete the proof of Theorem 9. □

Proof of Theorem 10

According to Eq. (29), we have

$$ I(b_{{ij\mu ,\delta_{1} }} ) = \left( {I(b_{ij\mu ,\psi }^{(t)} )} \right)^{{\delta_{1} }} \left( {\prod\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} } \right)^{{\frac{{1 - \delta_{1} }}{m - 1}}} ,\quad I(b_{{ij\nu ,\delta_{1} }} ) = \left( {I(b_{ij\nu ,\psi }^{(t)} )} \right)^{{\delta_{1} }} \left( {\prod\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} } \right)^{{\frac{{1 - \delta_{1} }}{m - 1}}} , $$

and

$$ I(b_{{ij\mu ,\delta_{2} }} ) = \left( {I(b_{ij\mu ,\psi }^{(t)} )} \right)^{{\delta_{2} }} \left( {\prod\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} } \right)^{{\frac{{1 - \delta_{2} }}{m - 1}}} ,\quad I(b_{{ij\nu ,\delta_{2} }} ) = \left( {I(b_{ij\nu ,\psi }^{(t)} )} \right)^{{\delta_{2} }} \left( {\prod\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} } \right)^{{\frac{{1 - \delta_{2} }}{m - 1}}} , $$

then, by Definition 6, we have

$$ \begin{aligned} d(B_{{\delta_{1} }} ,B_{\psi }^{(t)} ) & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(b_{{ij\mu ,\delta_{1} }} ) - \ln I(b_{ij\mu ,\psi }^{(t)} )} \right| + \left| {\ln I(b_{{ij\nu ,\delta_{1} }} ) - \ln I(b_{ij\nu ,\psi }^{(t)} )} \right|} \right)} \\ & = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\delta_{1} \ln I(b_{ij\mu ,\psi } ) + \frac{{1 - \delta_{1} }}{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} - \ln I(b_{ij\mu ,\psi }^{(t)} )} \right|} \right.} \\ & \left. {\quad + \left| {\delta_{1} \ln I(b_{ij\nu ,\psi } ) + \frac{{1 - \delta_{1} }}{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} - \ln I(b_{ij\nu ,\psi }^{(t)} )} \right|} \right) \\ & = \frac{{1 - \delta_{1} }}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\frac{1}{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} - \ln I(b_{ij\mu ,\psi }^{(t)} )} \right| + \left| {\frac{1}{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} - \ln I(b_{ij\nu ,\psi }^{(t)} )} \right|} \right)} . \\ \end{aligned} $$

Similarly, we have

$$ d(B_{{\delta_{2} }} ,B_{\psi }^{(t)} ) = \frac{{1 - \delta_{2} }}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\frac{1}{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} - \ln I(b_{ij\mu ,\psi }^{(t)} )} \right| + \left| {\frac{1}{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} - \ln I(b_{ij\nu ,\psi }^{(t)} )} \right|} \right)} . $$

Since \( \delta_{1} \ge \delta_{2} \), then \( d(B_{{\delta_{1} }} ,B_{\psi }^{(t)} ) \le d(B_{{\delta_{2} }} ,B_{\psi }^{(t)} ) \), which completes the proof of Theorem 10. □

Proof of Theorem 11

According to Eq. (51), we have \( B_{\psi }^{(t + 1)} = \left( {b_{ij,\psi }^{(t + 1)} } \right)_{n \times n} = \left( {\langle b_{ij\mu ,\psi }^{(t + 1)} ,} \right.\left. {b_{ij\nu ,\psi }^{(t + 1)} \rangle } \right)_{n \times n}, \) where

$$ I(b_{ij\mu ,\psi }^{(t + 1)} ) = \left( {I(b_{ij\mu ,\psi }^{(t)} )} \right)^{\delta } \left( {\prod\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} } \right)^{{\frac{1 - \delta }{m - 1}}} ,\quad I(b_{ij\nu ,\psi }^{(t + 1)} ) = \left( {I(b_{ij\nu ,\psi }^{(t)} )} \right)^{\delta } \left( {\prod\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} } \right)^{{\frac{1 - \delta }{m - 1}}} . $$
(55)

For all \( l \ne \psi \), we have \( B_{l}^{(t + 1)} = B_{l}^{(t)} \), and \( {\text{ICD}}(B_{l}^{(t)} ) < {\text{ICD}}(B_{\psi }^{(t)} ),l \ne \psi \).

From Definition 6 and Eq. (55), for all \( l \ne \psi \), one can obtain that

$$ \begin{aligned} & d(B_{\psi }^{(t + 1)} ,B_{l}^{(t + 1)} ) \\ & \quad = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(b_{ij\mu ,\psi }^{(t + 1)} ) - \ln I(b_{ij\mu ,l}^{(t + 1)} )} \right| + \left| {\ln I(b_{ij\nu ,\psi }^{(t + 1)} ) - \ln I(b_{ij\nu ,l}^{(t + 1)} )} \right|} \right)} \\ & \quad = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(b_{ij\mu ,\psi }^{(t + 1)} ) - \ln I(b_{ij\mu ,l}^{(t)} )} \right| + \left| {\ln I(b_{ij\nu ,\psi }^{(t + 1)} ) - \ln I(b_{ij\nu ,l}^{(t)} )} \right|} \right)} \\ & \quad = \frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\delta \ln I(b_{ij\mu ,\psi }^{(t)} ) + \frac{1 - \delta }{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\mu ,k}^{(t)} )} - \delta \ln I(b_{ij\mu ,l}^{(t)} ) - (1 - \delta )\ln I(b_{ij\mu ,l}^{(t)} )} \right|} \right.} \\ & \left. {\quad \quad + \left| {\delta \ln I(b_{ij\nu ,\psi }^{(t)} ) + \frac{1 - \delta }{m - 1}\sum\limits_{k \ne \psi } {I(b_{ij\nu ,k}^{(t)} )} - \delta \ln I(b_{ij\nu ,l}^{(t)} ) - (1 - \delta )\ln I(b_{ij\nu ,l}^{(t)} )} \right|} \right) \\ & \quad \le \frac{\delta }{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(b_{ij\mu ,\psi }^{(t)} ) - \ln I(b_{ij\mu ,l}^{(t)} )} \right| + \left| {\ln I(b_{ij\nu ,\psi }^{(t)} ) - \ln I(b_{ij\nu ,l}^{(t)} )} \right|} \right)} \\ & \quad \quad + \frac{1 - \delta }{m - 1}\sum\limits_{k \ne \psi } {\frac{1}{n(n - 1)\ln 2\tau }\sum\limits_{i < j} {\left( {\left| {\ln I(b_{ij\mu ,k}^{(t)} ) - \ln I(b_{ij\mu ,l}^{(t)} )} \right| + \left| {\ln I(b_{ij\nu ,k}^{(t)} ) - \ln I(b_{ij\nu ,l}^{(t)} )} \right|} \right)} } \\ & \quad = \delta d(B_{\psi }^{(t)} ,B_{l}^{(t)} ) + \frac{1 - \delta }{m - 1}\sum\limits_{k \ne \psi } {d(B_{k}^{(t)} ,B_{l}^{(t)} )} \\ & \quad < \delta d(B_{\psi }^{(t)} ,B_{l}^{(t)} ) + \frac{1 - \delta }{m - 1}\sum\limits_{k \ne l} {d(B_{k}^{(t)} ,B_{l}^{(t)} )} \\ & \quad = \delta d(B_{\psi }^{(t)} ,B_{l}^{(t)} ) + (1 - \delta ){\text{ICD}}(B_{l}^{(t)} ), \\ \end{aligned} $$

it follows that

$$ \begin{aligned} {\text{ICD}}(B_{\psi }^{(t + 1)} ) & = \frac{1}{m - 1}\sum\limits_{l \ne \psi } {d(B_{\psi }^{(t + 1)} ,B_{l}^{(t + 1)} )} \\ & < \frac{1}{m - 1}\sum\limits_{l \ne \psi } {\left( {\delta d(B_{\psi }^{(t)} ,B_{l}^{(t)} ) + (1 - \delta ){\text{ICD}}(B_{l}^{(t)} )} \right)} \\ & = \delta \frac{1}{m - 1}\sum\limits_{l \ne \psi } {d(B_{\psi }^{(t)} ,B_{l}^{(t)} )} + (1 - \delta )\frac{1}{m - 1}\sum\limits_{l \ne k} {{\text{ICD}}(B_{l}^{(t)} )} \\ & < \delta {\text{ICD}}(B_{\psi }^{(t)} ) + (1 - \delta )\frac{1}{m - 1}\sum\limits_{l \ne k} {{\text{ICD}}(B_{\psi }^{(t)} )} \\ & = {\text{ICD}}(B_{\psi }^{(t)} ). \\ \end{aligned} $$

Therefore, we complete the proof of Theorem 11. □

Proof of Theorem 12

Suppose that \( B_{\psi }^{(t)} \) is the IFLPR which needs to be adjusted in the tth iteration, then we have \( B_{l}^{(t + 1)} = B_{l}^{(t)} \) for all \( l \ne \psi \).

According to Theorem 11, we have \( {\text{ICD}}(B_{\psi }^{(t + 1)} ) < {\text{ICD}}(B_{\psi }^{(t)} ) \), that is

$$ {\text{ICD}}(B_{\psi }^{(t + 1)} ) - {\text{ICD}}(B_{\psi }^{(t)} ) < 0. $$
(56)

Therefore, by Definition 10 and Eq. (56), for each \( t \), we have

$$ \begin{aligned} {\text{GCD}}^{(t + 1)} - {\text{GCD}}^{(t)} & = \frac{1}{m}\sum\limits_{k = 1}^{m} {\frac{1}{m - 1}\sum\limits_{l \ne k} {d(B_{k}^{(t + 1)} ,B_{l}^{(t + 1)} )} } - \frac{1}{m}\sum\limits_{k = 1}^{m} {\frac{1}{m - 1}\sum\limits_{l \ne k} {d(B_{k}^{(t)} ,B_{l}^{(t)} )} } \\ & = \frac{2}{m}\left( {\frac{1}{m - 1}\sum\limits_{l \ne \psi } {d(B_{\psi }^{(t + 1)} ,B_{l}^{(t + 1)} )} - \frac{1}{m - 1}\sum\limits_{l \ne \psi } {d(B_{\psi }^{(t)} ,B_{l}^{(t)} )} } \right) \\ & = \frac{2}{m}\left( {{\text{ICD}}(B_{\psi }^{(t + 1)} ) - {\text{ICD}}(B_{\psi }^{(t)} )} \right) < 0, \\ \end{aligned} $$

i.e.,

$$ {\text{GCD}}^{(t + 1)} < {\text{GCD}}^{(t)} \,{\text{for}}\,{\text{each}}\,t. $$

This completes the Proof of Theorem 12. □

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Ni, Z., Pei, L. et al. A decision support model for group decision making with intuitionistic fuzzy linguistic preferences relations. Neural Comput & Applic 31 (Suppl 2), 1103–1124 (2019). https://doi.org/10.1007/s00521-017-3071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3071-z

Keywords

Navigation