Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Short-term wind speed forecasting has become an important technology to utilize sustainable energy, reduce the impact of wind power grid and improve the control of wind turbines. Current forecasting models based on individual algorithm and hybrid optimization algorithm could be applied to a variety of wind speed forecast. However, these algorithms ignored the limitation of optimizing parameter and the use of recent data, which may result in forecasting poor accuracy. In this paper, integrated approaches, combining singular spectrum analysis technique, cuckoo search algorithm (CSA) and harmony search algorithm (HSA), and back propagation neural network (BPNN), were introduced for conducting short-term wind speed forecasting. Firstly, the SSA technique is used for identifying and extracting instable components from raw wind speed signals. Then, the parameters of BPNN are employed to be optimized by the CSA/HSA, which improve precision of forecast results. Finally, the BPNN is utilized to deal with the wind speed series. The proposed hybrid model is conducted by the wind speed at three stations located in Penglai, China. Our experiment reveals that the proposed hybrid model can generate a more accurate, reliable and robust result and SSA technique is found to be superior technique to preprocess wind speed series. Furthermore, we compare to the forecast results with SSA and non SSA denoising procedure and found that hybrid model with SSA technique outperforms other prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

SSA:

Singular spectrum analysis

HSA:

Harmony search algorithm

CSA:

Cuckoo search algorithm

BPNN:

Back propagation neural network

NWP:

Numerical weather predication

FART:

Fuzzy adaptive resonance theory

ANN:

Artificial neural networks

EMD:

Empirical mode decomposition

KF:

Kalman filter

SVM:

Support vector machine

ARMA:

Auto-regressive moving average

NARX:

The nonlinear autoregressive model

ARIMA:

Autoregressive integrated moving average

ABC:

The artificial bee colony algorithm

FNN:

Fuzzy neural network

CSA-BPNN:

BPNN is optimized by cuckoo search algorithm

HSA-BPNN:

BPNN is optimized by harmony search algorithm

SSA-BPNN:

Forecasting results of BPNN denoised by SSA

SSA-CSA-BPNN:

Cuckoo search to optimize BPNN denoised by SSA

SSA-HSA-BPNN:

Harmony search to optimize BPNN denoised by SSA

PM:

Persistent model

MLR:

Multiple linear regression

WT:

Wavelet transform

GA:

Genetic algorithm

MLP:

Multilayer perception

PSO:

Particle swarm optimization

SA:

Simulated annealing

RVM:

Relevance vector machine

DM test:

Diebold–Mariano test

MA:

Moving-average

References

  1. Cartwright J (2015) China’s wind power industry and market development situation analysis. China industry insight network. http://www.51report.com/2015/hot-research_0108/3057577.html, Accessed 8 Jan 2015

  2. Liu H, Tian HQ, Li YF (2015) Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions. Energy Convers 89:1–11. doi:10.1016/j.enconman.2014.09.060

    Article  Google Scholar 

  3. Cassolaa F, Burlando M (2012) Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl Energy 99:154–166. doi:10.1016/j.apenergy.2012.03.054

    Article  Google Scholar 

  4. Barbounis TG, Theocharis JB (2007) A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 70:1525–1542. doi:10.1016/j.neucom.2006.01.032

    Article  Google Scholar 

  5. Liu H, Erdem E, Shi J (2011) Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy 88:724–732. doi:10.1016/j.apenergy.2010.09.028

    Article  Google Scholar 

  6. Shukur OB, Lee MH (2015) Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew Energy 76:637–647. doi:10.1016/j.renene.2014.11.084

    Article  Google Scholar 

  7. Liu H, Chen C, Tian HQ, Li Y (2012) A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48:545–556. doi:10.1016/j.renene.2012.06.012

    Article  Google Scholar 

  8. Teles LO, Fernandes M, Amorim J, Vasconcelos V (2015) Video-tracking of zebra fish (Daniorerio) as a biological early warning system using two distinct artificial neural networks: probabilistic neural network (PNN) and self-organizing map (SOM). Aquat Toxicol 165:241–248. doi:10.1016/j.aquatox.2015.06.008

    Article  Google Scholar 

  9. Traorea S, Luoa YF, Fippsa G (2015) Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages. Agric Water Manag 163:363–379. doi:10.1016/j.agwat.2015.10.009

    Article  Google Scholar 

  10. Lu Y, Zeng NY, Liu YR, Zhang N (2015) A hybrid Wavelet Neural Network and Switching Particle Swarm Optimization algorithm for face direction recognition. Neurocomputing 155:219–224. doi:10.1016/j.neucom.2014.12.026

    Article  Google Scholar 

  11. Andreini P, Bonechi S, Bianchini M, Mecocci A, Massa VD (2016) Automatic image classification for the urinoculture screening. Comput Biol Med 39:12–22. doi:10.1016/j.compbiomed.2015.12.025

    Article  Google Scholar 

  12. Saraiva FO, Bernardes WMS, Asada EN (2015) A framework for classification of non-linear loads in smart grids using Artificial Neural Networks and Multi-Agent Systems. Neurocomputing 170:328–338. doi:10.1016/j.neucom.2015.02.090

    Article  Google Scholar 

  13. Günay ME (2016) Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90:92–101. doi:10.1016/j.enpol.2015.12.019

    Article  Google Scholar 

  14. Bates JM, Granger CW (1969) The combination of forecasts. J Oper Res Soc 20:451–468. doi:10.1057/jors.1969.103

    Article  Google Scholar 

  15. Azad HB, Mekhilef S, Ganapathy VG (2014) Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans Sustain Energy 5:546–553. doi:10.1109/TSTE.2014.2300150

    Article  Google Scholar 

  16. Palomares-Salas JC, Aguera-Perez A, de la Rosa JJG, Sierra-Fernandez JM, Moreno-Munoz A (2013) Exogenous measurements from basic meteorological Stations for wind speed forecasting. Energies 6:5807–5825. doi:10.3390/en6115807

    Article  Google Scholar 

  17. Haque AU, Mandal P, Meng J, Negnevitsky M (2015) Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int J Sustain Energy 34:38–51. doi:10.1080/14786451.2013.826224

    Article  Google Scholar 

  18. Bao Y, Wang H, Wang B (2014) Short-term wind power prediction using differential EMD and relevance vector machine. Neural Comput Appl 25:283–289. doi:10.1007/s00521-013-1482-z

    Article  Google Scholar 

  19. Liu H, Tian H, Chen C, Li Y (2013) An experimental investigation of two wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Int J Electr Power Energy Syst 52:161–173. doi:10.1016/j.ijepes.2013.03.034

    Article  Google Scholar 

  20. Wu C-H, Tzeng G-H, Goo Y-J, Fang W-C (2007) A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 32:397–408. doi:10.1016/j.eswa.2005.12.008

    Article  Google Scholar 

  21. Lin SW, Ying KC, Chen SC, Lee Z (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35:1817–1824. doi:10.1016/j.eswa.2007.08.088

    Article  Google Scholar 

  22. Huang CL, Dun JF (2008) A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8:1381–1391. doi:10.1016/j.asoc.2007.10.007

    Article  Google Scholar 

  23. Wang J, Jiang H, Wu Y, Dong Y (2015) Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm. Energy 81:627–644. doi:10.1016/j.energy.2015.01.006

    Article  Google Scholar 

  24. Sadaeia HJ, Enayatifarb R, Abdullahb AH, Ganic A (2010) Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int J Prod Econ 64:118–129. doi:10.1016/j.ijepes.2014.04.026

    Google Scholar 

  25. Hassania H, Webstera A, Silva ES, Heravi S (2015) Forecasting U.S. tourist arrivals using optimal singular spectrum analysis. Tour Manag 46:322–335. doi:10.1016/j.tourman.2014.07.004

    Article  Google Scholar 

  26. Ali ES (2015) Speed control of induction motor supplied by wind turbine via Imperialist Competitive Algorithm. Energy 89:593–600. doi:10.1016/j.energy.2015.06.011

    Article  Google Scholar 

  27. Yang X-S, Deb S (2010) Engineering optimization by Cuckoo Search. Int J Math Model Numer Optim 1:330–343. doi:10.1504/IJMMNO.2010.035430

    MATH  Google Scholar 

  28. Abd-Elaziz AY, Ali ES (2015) Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system. Int J Electr Power Energy Syst 73:632–643. doi:10.1016/j.ijepes.2015.05.050

    Article  Google Scholar 

  29. Li Xiangtao, Yin Minghao (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97. doi:10.1016/j.ins.2014.11.042

    Article  Google Scholar 

  30. Geem W, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simul Trans Soc Model Simul Int 76:60–68. doi:10.1177/003754970107600201

    Google Scholar 

  31. Ali ES, Abd-Elazim SM, Abd-Elaziz AY (2016) Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263. doi:10.1016/j.ijepes.2015.11.085

    Article  Google Scholar 

  32. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Energy 194:3902–3933. doi:10.1016/j.cma.2004.09.007

    Article  MATH  Google Scholar 

  33. Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng 197:3080–3091. doi:10.1016/j.cma.2008.02.006

    Article  MATH  Google Scholar 

  34. Mahdavi M, Fesanghary E, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579. doi:10.1016/j.amc.2006.11.033

    MathSciNet  MATH  Google Scholar 

  35. Alharbi N, Hassani H (2015) A new approach for selecting the number of the eigenvalues in singular spectrum analysis. J Frankl Inst 353:1–16. doi:10.1016/j.jfranklin.2015.10.015

    Article  MathSciNet  Google Scholar 

  36. Hassani H, Mahmoudv R, Zokaei M (2011) Separability and window length in singular spectrum analysis. CR Math 349:987–990. doi:10.1016/j.crma.2011.07.012

    MathSciNet  MATH  Google Scholar 

  37. Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–265. doi:10.1198/073500102753410444

    Google Scholar 

  38. Zhang J, Morris AJ (1998) A sequential learning approach for single hidden layer neural networks. Neural Netw 11:65–80. doi:10.1016/S0893-6080(97)00111-1

    Article  Google Scholar 

  39. Gemperline PJ, Long JR, Gregoriou VG (1991) Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal Chem 63:2313–2323. doi:10.1021/ac00020a022

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 71573034). All the authors do not have any possible conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranran Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Li, R. & Zhang, K. Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed. Neural Comput & Applic 30, 1–19 (2018). https://doi.org/10.1007/s00521-016-2679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2679-8

Keywords

Navigation