Abstract
Short-term wind speed forecasting has become an important technology to utilize sustainable energy, reduce the impact of wind power grid and improve the control of wind turbines. Current forecasting models based on individual algorithm and hybrid optimization algorithm could be applied to a variety of wind speed forecast. However, these algorithms ignored the limitation of optimizing parameter and the use of recent data, which may result in forecasting poor accuracy. In this paper, integrated approaches, combining singular spectrum analysis technique, cuckoo search algorithm (CSA) and harmony search algorithm (HSA), and back propagation neural network (BPNN), were introduced for conducting short-term wind speed forecasting. Firstly, the SSA technique is used for identifying and extracting instable components from raw wind speed signals. Then, the parameters of BPNN are employed to be optimized by the CSA/HSA, which improve precision of forecast results. Finally, the BPNN is utilized to deal with the wind speed series. The proposed hybrid model is conducted by the wind speed at three stations located in Penglai, China. Our experiment reveals that the proposed hybrid model can generate a more accurate, reliable and robust result and SSA technique is found to be superior technique to preprocess wind speed series. Furthermore, we compare to the forecast results with SSA and non SSA denoising procedure and found that hybrid model with SSA technique outperforms other prediction model.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- SSA:
-
Singular spectrum analysis
- HSA:
-
Harmony search algorithm
- CSA:
-
Cuckoo search algorithm
- BPNN:
-
Back propagation neural network
- NWP:
-
Numerical weather predication
- FART:
-
Fuzzy adaptive resonance theory
- ANN:
-
Artificial neural networks
- EMD:
-
Empirical mode decomposition
- KF:
-
Kalman filter
- SVM:
-
Support vector machine
- ARMA:
-
Auto-regressive moving average
- NARX:
-
The nonlinear autoregressive model
- ARIMA:
-
Autoregressive integrated moving average
- ABC:
-
The artificial bee colony algorithm
- FNN:
-
Fuzzy neural network
- CSA-BPNN:
-
BPNN is optimized by cuckoo search algorithm
- HSA-BPNN:
-
BPNN is optimized by harmony search algorithm
- SSA-BPNN:
-
Forecasting results of BPNN denoised by SSA
- SSA-CSA-BPNN:
-
Cuckoo search to optimize BPNN denoised by SSA
- SSA-HSA-BPNN:
-
Harmony search to optimize BPNN denoised by SSA
- PM:
-
Persistent model
- MLR:
-
Multiple linear regression
- WT:
-
Wavelet transform
- GA:
-
Genetic algorithm
- MLP:
-
Multilayer perception
- PSO:
-
Particle swarm optimization
- SA:
-
Simulated annealing
- RVM:
-
Relevance vector machine
- DM test:
-
Diebold–Mariano test
- MA:
-
Moving-average
References
Cartwright J (2015) China’s wind power industry and market development situation analysis. China industry insight network. http://www.51report.com/2015/hot-research_0108/3057577.html, Accessed 8 Jan 2015
Liu H, Tian HQ, Li YF (2015) Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions. Energy Convers 89:1–11. doi:10.1016/j.enconman.2014.09.060
Cassolaa F, Burlando M (2012) Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl Energy 99:154–166. doi:10.1016/j.apenergy.2012.03.054
Barbounis TG, Theocharis JB (2007) A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 70:1525–1542. doi:10.1016/j.neucom.2006.01.032
Liu H, Erdem E, Shi J (2011) Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy 88:724–732. doi:10.1016/j.apenergy.2010.09.028
Shukur OB, Lee MH (2015) Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew Energy 76:637–647. doi:10.1016/j.renene.2014.11.084
Liu H, Chen C, Tian HQ, Li Y (2012) A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48:545–556. doi:10.1016/j.renene.2012.06.012
Teles LO, Fernandes M, Amorim J, Vasconcelos V (2015) Video-tracking of zebra fish (Daniorerio) as a biological early warning system using two distinct artificial neural networks: probabilistic neural network (PNN) and self-organizing map (SOM). Aquat Toxicol 165:241–248. doi:10.1016/j.aquatox.2015.06.008
Traorea S, Luoa YF, Fippsa G (2015) Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages. Agric Water Manag 163:363–379. doi:10.1016/j.agwat.2015.10.009
Lu Y, Zeng NY, Liu YR, Zhang N (2015) A hybrid Wavelet Neural Network and Switching Particle Swarm Optimization algorithm for face direction recognition. Neurocomputing 155:219–224. doi:10.1016/j.neucom.2014.12.026
Andreini P, Bonechi S, Bianchini M, Mecocci A, Massa VD (2016) Automatic image classification for the urinoculture screening. Comput Biol Med 39:12–22. doi:10.1016/j.compbiomed.2015.12.025
Saraiva FO, Bernardes WMS, Asada EN (2015) A framework for classification of non-linear loads in smart grids using Artificial Neural Networks and Multi-Agent Systems. Neurocomputing 170:328–338. doi:10.1016/j.neucom.2015.02.090
Günay ME (2016) Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90:92–101. doi:10.1016/j.enpol.2015.12.019
Bates JM, Granger CW (1969) The combination of forecasts. J Oper Res Soc 20:451–468. doi:10.1057/jors.1969.103
Azad HB, Mekhilef S, Ganapathy VG (2014) Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans Sustain Energy 5:546–553. doi:10.1109/TSTE.2014.2300150
Palomares-Salas JC, Aguera-Perez A, de la Rosa JJG, Sierra-Fernandez JM, Moreno-Munoz A (2013) Exogenous measurements from basic meteorological Stations for wind speed forecasting. Energies 6:5807–5825. doi:10.3390/en6115807
Haque AU, Mandal P, Meng J, Negnevitsky M (2015) Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int J Sustain Energy 34:38–51. doi:10.1080/14786451.2013.826224
Bao Y, Wang H, Wang B (2014) Short-term wind power prediction using differential EMD and relevance vector machine. Neural Comput Appl 25:283–289. doi:10.1007/s00521-013-1482-z
Liu H, Tian H, Chen C, Li Y (2013) An experimental investigation of two wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Int J Electr Power Energy Syst 52:161–173. doi:10.1016/j.ijepes.2013.03.034
Wu C-H, Tzeng G-H, Goo Y-J, Fang W-C (2007) A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 32:397–408. doi:10.1016/j.eswa.2005.12.008
Lin SW, Ying KC, Chen SC, Lee Z (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35:1817–1824. doi:10.1016/j.eswa.2007.08.088
Huang CL, Dun JF (2008) A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8:1381–1391. doi:10.1016/j.asoc.2007.10.007
Wang J, Jiang H, Wu Y, Dong Y (2015) Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm. Energy 81:627–644. doi:10.1016/j.energy.2015.01.006
Sadaeia HJ, Enayatifarb R, Abdullahb AH, Ganic A (2010) Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int J Prod Econ 64:118–129. doi:10.1016/j.ijepes.2014.04.026
Hassania H, Webstera A, Silva ES, Heravi S (2015) Forecasting U.S. tourist arrivals using optimal singular spectrum analysis. Tour Manag 46:322–335. doi:10.1016/j.tourman.2014.07.004
Ali ES (2015) Speed control of induction motor supplied by wind turbine via Imperialist Competitive Algorithm. Energy 89:593–600. doi:10.1016/j.energy.2015.06.011
Yang X-S, Deb S (2010) Engineering optimization by Cuckoo Search. Int J Math Model Numer Optim 1:330–343. doi:10.1504/IJMMNO.2010.035430
Abd-Elaziz AY, Ali ES (2015) Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system. Int J Electr Power Energy Syst 73:632–643. doi:10.1016/j.ijepes.2015.05.050
Li Xiangtao, Yin Minghao (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97. doi:10.1016/j.ins.2014.11.042
Geem W, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simul Trans Soc Model Simul Int 76:60–68. doi:10.1177/003754970107600201
Ali ES, Abd-Elazim SM, Abd-Elaziz AY (2016) Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263. doi:10.1016/j.ijepes.2015.11.085
Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Energy 194:3902–3933. doi:10.1016/j.cma.2004.09.007
Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng 197:3080–3091. doi:10.1016/j.cma.2008.02.006
Mahdavi M, Fesanghary E, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579. doi:10.1016/j.amc.2006.11.033
Alharbi N, Hassani H (2015) A new approach for selecting the number of the eigenvalues in singular spectrum analysis. J Frankl Inst 353:1–16. doi:10.1016/j.jfranklin.2015.10.015
Hassani H, Mahmoudv R, Zokaei M (2011) Separability and window length in singular spectrum analysis. CR Math 349:987–990. doi:10.1016/j.crma.2011.07.012
Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–265. doi:10.1198/073500102753410444
Zhang J, Morris AJ (1998) A sequential learning approach for single hidden layer neural networks. Neural Netw 11:65–80. doi:10.1016/S0893-6080(97)00111-1
Gemperline PJ, Long JR, Gregoriou VG (1991) Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal Chem 63:2313–2323. doi:10.1021/ac00020a022
Acknowledgements
This research was supported by the National Natural Science Foundation of China (Grant No. 71573034). All the authors do not have any possible conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jiang, P., Li, R. & Zhang, K. Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed. Neural Comput & Applic 30, 1–19 (2018). https://doi.org/10.1007/s00521-016-2679-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-016-2679-8