Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generalized self-tuning regulator based on online support vector regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a novel generalized self-tuning regulator based on online support vector regression (OSVR) for nonlinear systems. The main idea is to approximate the parameters of an adaptive controller by optimizing the regression margin between reference input and system output. For this purpose, “closed-loop margin” which depends on tracking error is defined, and the parameters of the adaptive controller are optimized so as to minimize the tracking error which leads simultaneously to the optimization of the closed-loop margin. The overall architecture consists of an online SVR which computes a forward model of the system, an adaptive controller with tunable parameters and an adaptation mechanism realized by separate online SVRs to estimate each tunable controller parameter. The proposed architecture is implemented with adaptive proportional–integral–derivative (PID) and adaptive fuzzy PID in the controller block. The performance of the generalized self-tuning regulator mechanism has been examined via simulations performed on a bioreactor benchmark system, and the results show that the generalized adaptive controller and OSVR model attain good control and modeling performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bobal V, Bohm J, Fessl J, Machacek J (2005) Digital self-tuning controllers. Advanced textbooks in control and signal processing. Springer, London

    Google Scholar 

  2. Aström KJ, Wittenmark B (2008) Adaptive control. Dover Publications, Mineola

    Google Scholar 

  3. Aström KJ (1983) Theory and applications of adaptive control—a survey. Automatica 19(5):471–486

    Article  Google Scholar 

  4. Wellstead PE, Liptak BG, Renganathan S (2006) Self-tuning controllers. In: Liptak Bela G (ed) Instrument engineers handbook: process control and optimization, vol 2, 4th edn. CRC Press, Boca Raton, pp 345–350

    Google Scholar 

  5. Aström KJ, Borisson U, Ljung L, Wittenmark B (1977) Theory and applications of self-tuning regulators. Automatica 13(5):457–476

    Article  MATH  Google Scholar 

  6. Akhyar S, Omatu S (1993) Self-tuning PID control by neural networks. In: International joint conference on neural network (IJCNN’93), Nagoya

  7. Wang GJ, Fong CT, Chang KJ (2001) Neural-network-based self-tuning PI controller for precise motion control of PMAC motors. IEEE Trans Ind Electron 48(2):408–415

    Article  Google Scholar 

  8. Efe MO, Kaynak O (2000) A comparative study of soft-computing methodologies in identification of robotic manipulators. Robot Auton Syst 30(3):221–230

    Article  Google Scholar 

  9. Hagan MT, Demuth HB, De Jesus O (2002) An introduction to the use of neural networks in control systems. Int J Robust Nonlinear Control 12(11):959–985. doi:10.1002/rnc.727

    Article  MATH  Google Scholar 

  10. Shu HL, Pi YG (2000) PID neural networks for time-delay systems. Comput Chem Eng 24(2–7):859–862. doi:10.1016/S0098-1354(00)00340-9

    Article  Google Scholar 

  11. Spooner JT, Passino KM (1996) Stable adaptive control using fuzzy systems and neural networks. IEEE Trans Fuzzy Syst 4(3):339–359. doi:10.1109/91.531775

    Article  Google Scholar 

  12. Denai MA, Palis F, Zeghbib A (2004) ANFIS based modelling and control of non-linear systems: a tutorial. In: IEEE international conference on systems, man and cybernetics

  13. Smola AJ, Schlkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  14. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, London

    Google Scholar 

  16. Suykens JAK (2001) Nonlinear modelling and support vector machines. In: IEEE instrumentation and measurement technology conference (IMTC/2001), Budapest

  17. Wanfeng S, Shengdun Z, Yajing S (2008) Adaptive PID controller based on online LSSVM identification. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2008), Xian

  18. Wang X, Du Z, Chen J, Pan F (2009) Dynamic modeling of biotechnical process based on online support vector machine. J Comput 4(3):251–258. doi:10.4304/jcp.4.3.251-258

    Google Scholar 

  19. Iplikci S (2010) A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int J Robust Nonlinear Control 20(13):1483–1501. doi:10.1002/rnc.1524

    MathSciNet  MATH  Google Scholar 

  20. Ponce AN, Behar AA, Hernandez AO, Sitar VR (2004) Neural networks for self-tuning control systems. Acta Polytech 44(1):49–52

    Google Scholar 

  21. Flynn D, McLoone S, Irwin GW, Brown MD, Swidenbank E, Hogg BW (1997) Neural control of turbogenerator systems. Automatica 33(11):1961–1973. doi:10.1016/S0005-1098(97)00142-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Abdullah R, Hussain AT, Zayed A (1997) A new RBF neural network based non-linear self-tuning pole-zero placement controller. In: 15th international conference on artificial neural networks (ICANN 2005), Warsaw

  23. Wahyudi S, Ahmad W, Htut MM (2009) Neural-tuned PID controller for point-to-point (PTP) positioning system: model reference approach. In: 5th international colloquium on signal processing and its applications (CSPA), Kuala

  24. Guo AW, Yang J (2007) Self-tuning PID control of hydro-turbine governor based on genetic neural networks. In: International symposium on intelligence computation and applications (ISICA 2007), Wuhan

  25. Kang Y, Chu MH, Chang CW, Chen YW, Chen MC (1997) The self-tuning neural speed regulator applied to DC servo motor. In: International conference on natural computation (ICNC 2007), Haikou

  26. Pham DT, Karaboga D (1999) Self-tuning fuzzy controller design using genetic optimisation and neural network modelling. Artif Intell Eng 13(2):119–130. doi:10.1016/S0954-1810(98)00017-X

    Article  Google Scholar 

  27. He SZ, Tan SH, Xu FL (1993) PID self-tuning control using a fuzzy adaptive mechanism. In: International conference on fuzzy systems, San Francisco

  28. Gautam D, Ha C (2013) Control of a quadrotor using a smart self-tuning fuzzy PID controller. Int J Adv Robot Syst 10:1–9. doi:10.5772/56911

    Article  Google Scholar 

  29. Ahn KK, Truong DQ, Thanh TQ, Lee BR (2008) Online self-tuning fuzzy proportional integral derivative control for hydraulic load simulator. J Syst Control Eng 222(2):81–95. doi:10.1243/09596518JSCE484

    Google Scholar 

  30. Qiao WZ, Mizumoto M (1996) PID type fuzzy controller and parameters adaptive method. Fuzzy Sets Syst 78(1):23–35

    Article  MathSciNet  MATH  Google Scholar 

  31. Woo ZW, Chung HY, Lin JJ (2000) A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Syst 115(2):321–326. doi:10.1016/S0165-0114(98)00159-6

    Article  MATH  Google Scholar 

  32. Bandyopadhyay R, Chakraborty UK, Patranabis D (2001) Autotuning a PID controller: a fuzzy-genetic approach. J Syst Archit 47(7):663–673. doi:10.1016/S1383-7621(01)00022-4

    Article  MATH  Google Scholar 

  33. Sharkawy AB (2010) Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng Appl Artif Intell 23(7):1041–1052. doi:10.1016/j.engappai.2010.06.011

    Article  Google Scholar 

  34. Bouallègue  S, Haggege J, Ayadi M, Benrejeb M (2012) PID-type fuzzy logic controller tuning based on particle swarm optimization. Eng Appl Artif Intell 25(3):484–493. doi:10.1016/j.engappai.2011.09.018

    Article  Google Scholar 

  35. Li C, Priemer R (1996) Self-learning general purpose PID controller. J Frankl Inst 334(2):167–189. doi:10.1016/S0016-0032(97)81151-9

    Article  MATH  Google Scholar 

  36. Bishr M, Yang YG, Lee G (2000) Self-tuning PID control using an adaptive network based fuzzy inference system. Intell Autom Soft Comput 6(4):271–280

    Article  Google Scholar 

  37. Lu CH, Cheng CC, Liu CM, Guo JY (2012) Self-tuning predictive PID controller using wavelet type-2 fuzzy neural networks. In: International conference on fuzzy theory and its applications (IFUZZY2012), Taichung

  38. Uçak K, Günel GÖ (2015) An adaptive support vector regressor controller for nonlinear systems. Soft Comput. doi:10.1007/s00500-015-1654-0

    MATH  Google Scholar 

  39. Iplikci S (2006) Online trained support vector machines-based generalized predictive control of non-linear systems. Int J Adapt Control Signal Process 20(10):599–621. doi:10.1002/acs.919

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma J, Theiler J, Perkins S (2003) Accurate online support vector regression. Neural Comput 15(11):2683–2703. doi:10.1162/089976603322385117

    Article  MATH  Google Scholar 

  41. Mario M (2002) On-line support vector machine regression. In: 13th European conference on machine learning (ECML 2002), Helsinki

  42. Efe MO, Kaynak O (1999) A comparative study of neural network structures in identification of nonlinear systems. Mechatronics 9(3):287–300. doi:10.1016/S0957-4158(98)00047-6

    Article  Google Scholar 

  43. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. doi:10.1109/21.256541

    Article  Google Scholar 

  44. Sung SW, Lee J, Lee IB (2009) Process identification and PID control. IEEE Press, Wiley, Singapore

    Book  Google Scholar 

  45. Aström KJ, Hagglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, Research Triangle Park

    Google Scholar 

  46. Visioli A (2006) Practical PID control. Springer, London

    MATH  Google Scholar 

  47. Luenberger DG, Ye Y (2008) Linear and nonlinear programming. Springer, New York

    MATH  Google Scholar 

  48. Saadia N, Amirat Y, Pontnau J, M’Sirdi NK (2001) Neural hybrid control of manipulators, stability analysis. Robotica 19:41–51. doi:10.1017/S0263574700002885

    Article  Google Scholar 

  49. Ungar LH (1990) Neural networks for control. In: Miller WT III, Sutton RS, Werbos PJ (eds) A bioreactor benchmark for adaptive network based process control. MIT Press, Cambridge, pp 387–402

    Google Scholar 

  50. Efe MO (2007) Discrete time fuzzy sliding mode control of a biochemical process. In: 9th WSEAS international conference on automatic control, modeling and simulation (ACMOS’07), Istanbul

  51. Efe MO, Abadoglu E, Kaynak O (1999) A novel analysis and design of a neural network assisted nonlinear controller for a bioreactor. Int J Robust Nonlinear Control 9(11):799–815. doi:10.1002/(SICI)1099-1239(199909)9:11<799:AID-RNC441>3.0.CO;2-U

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Uçak.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uçak, K., Günel, G.Ö. Generalized self-tuning regulator based on online support vector regression. Neural Comput & Applic 28 (Suppl 1), 775–801 (2017). https://doi.org/10.1007/s00521-016-2387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2387-4

Keywords

Navigation