Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Extreme learning machine for single-hidden-layer feedforward neural networks has been extensively applied in imbalanced data learning due to its fast learning capability. Ensemble approach can effectively improve the classification performance by combining several weak learners according to a certain rule. In this paper, a novel ensemble approach on weighted extreme learning machine for imbalanced data classification problem is proposed. The weight of each base learner in the ensemble is optimized by differential evolution algorithm. Experimental results on 12 datasets show that the proposed method could achieve more classification performance compared with the simple vote-based ensemble method and non-ensemble method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recogn 45(1):346–362

    Article  Google Scholar 

  2. Garcia-Pedrajas N, Perez-Rodriguez J, Garcia-Pedrajas MD, Ortiz-Boyer D, Fyfe C (2012) Class imbalance methods for translation initiation site recognition in DNA sequences. Knowl Based Syst 25(1):22–34

    Article  Google Scholar 

  3. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

    Article  Google Scholar 

  4. Tang Y, Zhang YQ, Chawla NV, Krasser S (2009) SVMs modeling for highly imbalanced classification. IEEE Trans Syst Man Cybernet B 39(1):281–288

    Article  Google Scholar 

  5. Liu X, Wu J, Zhou Z (2009) Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybernet B 39(2):539–550

    Article  Google Scholar 

  6. Zhou Z, Liu X (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng 18(1):63–77

    Article  MathSciNet  Google Scholar 

  7. Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn 40(12):3358–3378

    Article  MATH  Google Scholar 

  8. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern C Appl Rev 42(4):463–484

    Article  Google Scholar 

  9. Xue X, Yao M, Wu Z, Yang J (2014) Genetic ensemble of extreme learning machine. Neurocomputing 129:175–184

    Article  Google Scholar 

  10. Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recogn 38(10):1759–1763

    Article  MATH  Google Scholar 

  11. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  12. Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach for global optimization”. Springer, Berlin

    MATH  Google Scholar 

  13. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  14. Zong W, Huang GB, Chen YQ (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242

    Article  Google Scholar 

  15. Li K, Kong X, Lu Z, Liu W, Yin J (2014) Boosting weighted ELM for imbalanced learning. Neurocomputing 128:15–21

    Article  Google Scholar 

  16. Yu Q, Heeswijk M, Miche Y, Nian R, He B, Séverin E, Lendasse A (2014) Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing 129:153–158

    Article  Google Scholar 

  17. Mirza B, Lin Z, Toh KA (2013) Weighted online sequential extreme learning machine for class imbalance learning. Neural Process Lett 38(3):465–486

    Article  Google Scholar 

  18. Huang GB, Song S, Gupta J, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybernet 44(12):2405–2417

    Article  Google Scholar 

  19. Xia SX, Meng FR, Liu B, Zhou Y (2015) A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cognit Comput 7(1):74–85

    Article  Google Scholar 

  20. Mao W, Wang J, Xue Z (2016) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybernet. doi:10.1007/s13042-016-0509-z

  21. Mirza B, Lin Z, Liu N (2015) Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149:316–329

    Article  Google Scholar 

  22. Cao JW, Lin ZP, Huang GB, Liu N (2012) Voting based extreme learning machine. Inf Sci 185(1):66–77

    Article  MathSciNet  Google Scholar 

  23. Feng G, Qian Z, Zhang X (2012) Evolutionary selection extreme learning machine optimization for regression. Soft Comput 16(9):1485–1491

    Article  Google Scholar 

  24. Cao JW, Lin ZP, Huang GB (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36:285–305

    Article  Google Scholar 

  25. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162

    Article  Google Scholar 

  26. Liang NY, Saratchandran P, Huang GB, Sundararajan N (2006) Classification of mental tasks from EEG signals using extreme learning machine. Int J Neural Syst 16(1):29–38

    Article  Google Scholar 

  27. Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16):3056–3062

    Article  Google Scholar 

  28. Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  MATH  Google Scholar 

  29. Mukherjee R, Patra GR, Kundu R, Das S (2014) Cluster-based differential evolution with crowding archive for niching in dynamic environments. Inf Sci 267:58–82

    Article  MathSciNet  Google Scholar 

  30. KEEL dataset repository. http://sci2s.ugr.es/keel/imbalanced.php

Download references

Acknowledgments

This work is partly supported by National Natural Science Foundation of China (No. 61373127) and the State Key Laboratory for Novel Software Technology (Nanjing University) of China (No. KFKT2015B16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, B., Cai, J. et al. Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution. Neural Comput & Applic 28 (Suppl 1), 259–267 (2017). https://doi.org/10.1007/s00521-016-2342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2342-4

Keywords

Navigation