Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptively stepped SPH for fluid animation based on asynchronous time integration

  • Recent advances in Pattern Recognition and Artificial Intelligence
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

We present a novel adaptive stepping scheme for SPH fluids, in which particles have their own time steps determined from local conditions, e.g. courant condition. These individual time steps are constrained for global convergence and stability. Fluid particles are then updated asynchronously. The approach naturally allocates computing resources to visually complex regions, e.g. regions with intense collisions, thereby reducing the overall computational time. The experiments show that our approach is more efficient than the standard method and the method with globally adaptive time steps, especially in highly dynamic scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M (2014) Sph fluids in computer graphics. In: State-of-the-art report eurographics, pp 21–42

  2. Markus I, Nadir A, Markus B, Matthias T (2011) A parallel SPH implementation on multi-core CPUs. Comput Graph Forum 30(1):99–112

    Article  Google Scholar 

  3. Desbrun M, Cani M-P (1999) Space-time adaptive simulation of highly deformable substances. Technical Report 3829, INRIA

  4. Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph Proc SIGGRAPH 26(3):48

    Article  Google Scholar 

  5. Solenthaler B, Gross M (2011) Two-scale particle simulation. ACM Trans Graph Proc SIGGRAPH 30(4):81:1–81:8

    Google Scholar 

  6. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  7. Desbrun M, Cani M-P (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Eurographics workshop on computer animation and simulation (EGCAS), pp 61–67. Springer, Berlin

  8. Ihmsen M, Akinci N, Gissler M, Teschner M (2010) Boundary handling and adaptive time-stepping for PCISPH. In: Workshop on virtual reality interaction and physical simulation, pp 79–88. The Eurographics Association

  9. Goswami P, Batty C (2014) Regional time stepping for SPH. In: Eurographics, pp 45–48. The Eurographics Association

  10. Goswami P, Pajarola R (2011) Time adaptive approximate SPH. In: Proceedings of the 8th workshop on virtual reality interaction and physical simulation, pp 19–28. VRIPHYS

  11. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  12. Becker M, Teschner M (2007) Weakly compressible SPH for free surface flows. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 209–217

  13. Muller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 154–159

  14. He X, Liu N, Li S, Wang H, Wang G (2012) Local poisson SPH for viscous incompressible fluids. Comput Graph Forum 31(6):1948–1958

    Article  Google Scholar 

  15. Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Graph 20(3):426–435

    Article  Google Scholar 

  16. Akinci N, Ihmsen M, Akinci G et al (2012) Versatile rigid–fluid coupling for incompressible SPH. ACM Trans Graph TOG 31(4):62

    Google Scholar 

  17. Becker M, Tessendorf H, Teschner M (2009) Direct forcing for Lagrangian rigid–fluid coupling. IEEE Trans Vis Comput Graph 15(3):493–503

    Article  Google Scholar 

  18. Yu J, Turk G (2013) Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans Graph Proc SIGGRAPH 32(1):5:1–5:12

    MATH  Google Scholar 

  19. Bhatacharya H, Gao Y, Bargteil A (2011) A level-set method for skinning animated particle data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 17–24. ACM

  20. Akinci G, Ihmsen M, Akinci N, Teschner M (2012) Parallel surface reconstruction for particle-based fluids. In: Computer graphics forum, vol 31, pp 1797–1809. Wiley Online Library

  21. Zhou ZH, Zhao JW, Cao FL (2013) Surface reconstruction based on extreme learning machine. Neural Comput Appl 23(2):283–292

    Article  Google Scholar 

  22. Akinci N, Akinci G, Teschner M (2013) Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph Proc SIGGRAPH 32(6):182

    Google Scholar 

  23. Yu J, Wojtan C, Turk G, Yap C (2012) Explicit mesh surfaces for particle based fluids. In: Computer graphics forum, vol 31, pp 815–824. Wiley Online Library

  24. Goswami P, Schlegel P, Solenthaler B, Pajarola R (2010) Interactive sph simulation and rendering on the GPU. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 55–64. Eurographics Association

  25. Valdez-Balderas D, Domnguez JM, Rogers BD, Crespo AJC (2013) Towards accelerating smoothed particle hydrodynamics simulations for free surface flows on multi-GPU clusters. J Parallel Distrib Comput 73(11):1483–1493

    Article  Google Scholar 

  26. Domnguez JM, Crespo AJC, Gesteira MG (2013) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184(3):617–627

    Article  Google Scholar 

  27. Domnguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD, Gomez-Gesteira M (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184(8):1848–1860

    Article  Google Scholar 

  28. Chen JX, Fu X, Wegman J (1999) Real-time simulation of dust behavior generated by a fast traveling vehicle. ACM Trans Model Comput Simul 9(2):81–104

    Article  Google Scholar 

  29. Chen JX, Lobo NV (1995) Toward interactive-rate simulation of fluids with moving obstacles using Navier–Stokes equations. Graph Models Image Process 57(2):107–116

    Article  Google Scholar 

  30. Nie X, Chen L, Xiang T (2014) An efficient sleepy algorithm for particle-based fluids. Int J Comput Games Technol 2014:1–8

    Article  Google Scholar 

  31. Keiser R (2006) Multiresolution particle-based fluids. ETH Dep Comput Sci 31(6):17971809

    Google Scholar 

  32. Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale SPH. Pixar Technical Memo 13-04, Pixar Animation Studios

  33. Orthmann J, Kolb A (2012) Temporal blending for adaptive SPH. Comput Graph Forum 31(8):2436–2449

    Article  Google Scholar 

  34. Solenthaler B, Pajarola R (2009) Predictive–corrective incompressible SPH. ACM Trans Graph 28(3):40

    Article  Google Scholar 

  35. Rosipal R, Girolami M, Trejo LJ et al (2001) Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Comput Appl 10(3):231–243

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 61272357, 61300074, 61572075) and Fundamental Research Funds for the Central Universities (FRF-BR-15-058A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaokun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 20205 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, X., Wang, X., He, L. et al. Adaptively stepped SPH for fluid animation based on asynchronous time integration. Neural Comput & Applic 29, 33–42 (2018). https://doi.org/10.1007/s00521-016-2286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2286-8

Keywords

Navigation