Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptive fuzzy system-based variable-structure controller for multivariable nonaffine nonlinear uncertain systems subject to actuator nonlinearities

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel adaptive fuzzy variable-structure control approach is proposed for a class of multivariable nonaffine uncertain systems subject to dynamic nonlinear disturbances and actuator nonlinearities (dead zone and sector nonlinearities). By using the Taylor series expansion, an equivalent model in affine-like form is first derived for the nonaffine system. Then after, an adaptive fuzzy variable-structure controller is designed based on this affine-like equivalent model. The adaptive fuzzy systems are used to appropriately approximate the unknown nonlinear functions. The so-called SDU decomposition of the control gain matrix is exploited in the controller design and the stability analysis. It is proved that the proposed adaptive fuzzy control scheme can guarantee that all involved signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Finally, simulation results are presented to illustrate the effectiveness of this adaptive control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang L-X (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Tong SC, Li HX (2003) Fuzzy adaptive sliding model control for MIMO nonlinear systems. IEEE Trans Fuzzy Syst 11(3):354–360

    Article  Google Scholar 

  3. Tong SC, Chen B, Wang Y (2005) Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst 156(2):285–299

    Article  MathSciNet  MATH  Google Scholar 

  4. Labiod S, Boucherit MS, Guerra TM (2005) Adaptive fuzzy control of a class of MIMO nonlinear systems. Fuzzy Sets Syst 151:59–77

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang YC (2000) Robust tracking control for nonlinear MIMO systems via fuzzy approaches. Automatica 36:1535–1545

    Article  MathSciNet  MATH  Google Scholar 

  6. Essounbouli N, Hamzaoui A, Zaytoon J (2006) An improved robust adaptive fuzzy controller for MIMO systems. Control Intell Syst 34(1):12–21

    MathSciNet  MATH  Google Scholar 

  7. Du Z, Qu Z (2011) Improved adaptive fuzzy control for MIMO nonlinear time-delay systems. J Control Theory Appl 9(2):278–282

    Article  MathSciNet  Google Scholar 

  8. Boulkroune A, M’Saad M, Tadjine M, Farza M (2010) Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction. Fuzzy Sets Syst 161:797–820

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge SS, Hang CC, Zhang T (1999) Adaptive neural networks control of nonlinear systems by state and output feedback. IEEE Trans Syst Man Cybern Part B Cybern 29:818–828

    Article  Google Scholar 

  10. Park JY, Park GT (2003) Robust adaptive fuzzy controller for nonaffine nonlinear systems with dynamic rules activation. Int J Robust Nonlinear Control 13:117–139

    Article  MATH  Google Scholar 

  11. Labiod S, Guerra TM (2010) Indirect adaptive fuzzy control for a class of nonaffine nonlinear systems with unknown control directions. Int J Control Autom Syst 8(4):903–907

    Article  Google Scholar 

  12. Park JH, Kim SH (2004) Direct adaptive output feedback fuzzy controller for a nonaffine of nonlinear systems. IEE Proc Control Theory Appl 151:65–72

    Article  Google Scholar 

  13. Arefi MM, Ramezani Z, Jahed-Motlagh MR (2014) Observer-based adaptive robust control of nonlinear nonaffine systems with unknown gain sign. Nonlinear Dyn 78(3):2185–2194

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu LB, Yang GH (2015) Adaptive fault-tolerant control of a class of nonaffine nonlinear systems with mismatched parameter uncertainties and disturbances. Nonlinear Dyn. doi:10.1007/s11071-015-2235-6

    MathSciNet  MATH  Google Scholar 

  15. Boskovic JD, Chen L, Mehra R (2001) Adaptive tracking control of a class of nonaffine plants using dynamic feedback. In: American control conference, pp 2450–2455

  16. Essounbouli N, Hamzaoui A (2006) Direct and indirect robust adaptive fuzzy controllers for a class of nonlinear systems. Int J Control Autom Syst 4:146–154

    Google Scholar 

  17. Liu YJ, Wang W (2007) Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems. Inf Sci 177:3901–3917

    Article  MATH  Google Scholar 

  18. Doudou S, Khaber F (2012) Direct adaptive fuzzy control of a class of MIMO non-affine nonlinear systems. Int J Syst Sci 43(6):1029–1038

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu YJ, Tong S, Wang W (2009) Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst 160:2727–2754

    Article  MathSciNet  MATH  Google Scholar 

  20. Boulkroune A, MSaad M, Farza M (2012) Adaptive fuzzy tracking control for a class of MIMO nonaffine uncertain systems. Neurocomputing 93:48–55

    Article  Google Scholar 

  21. Boulkroune A, M’Saad M, Farza M (2012) Fuzzy approximation-based indirect adaptive controller for multi-input multi-output non-affine systems with unknown control direction. IET Control Theory Appl 17:2619–2629

    Article  MathSciNet  Google Scholar 

  22. Boulkroune A, MSaad M, Chekireb H (2010) Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction. Inf Sci 180:5041–5059

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsu K-C, Wang W-Y, Lin P-Z (2004) Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and deadzones. IEEE Trans Syst Man Cybern Part B Cybern 34(1):374–380

    Article  Google Scholar 

  24. Hsu K-C (1999) Decentralized sliding mode controller for uncertain time-delayed systems with series nonlinearities. J Dyn Syst Meas Control 121(4):708–713

    Article  MathSciNet  Google Scholar 

  25. Shyu K-K, Liu W-J, Hsu K-C (2003) Decentralized variable structure control design for uncertain large scale systems containing a deadzone. IEE Proc Control Theory Appl 150(5):467–475

    Article  Google Scholar 

  26. Shyu K-K, Liu W-J, Hsu K-C (2005) Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica 41:1239–1246

    Article  MathSciNet  MATH  Google Scholar 

  27. Niu Y, Ho DWC (2006) Design of sliding mode control for nonlinear stochastic systems subject to actuator nonlinearity. IEE Proc Control Theory Appl 153(6):737–744

    Article  MathSciNet  Google Scholar 

  28. Boulkroune A, MSaad M (2011) A fuzzy adaptive variable-structure control scheme for uncertain chaotic MIMO systems with sector nonlinearities and dead-zones. Expert Syst Appl 38(12):14744–14750

    Article  Google Scholar 

  29. Boulkroune A, M’Saad M, Farza M (2011) Adaptive fuzzy controller for multivariable nonlinear state time-varying delay systems subject to input nonlinearities. Fuzzy Sets Syst 164:45–65

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang T, Zhang SS, Hang CC (2000) Stable adaptive control for a class of nonlinear systems using a modified Lyapunov function. IEEE Trans Autom Control 45(1):129–132

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen J, Behal A, Dawson DM (2006) Adaptive output feedback control for a class of MIMO nonlinear systems. In: American control conference, pp 5300–5305

  32. Boulkroune A, M’saad M (2012) On the design of observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign. Fuzzy Sets Syst 201:71–85

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang L, Sui S, Li Y, Tong S (2015) Adaptive fuzzy output feedback tracking control with prescribed performance for chemical reactor of MIMO nonlinear systems. Nonlinear Dyn 80(1–2):945–957

    Article  MATH  Google Scholar 

  34. Azimi MM, Koofigar HR (2015) Adaptive fuzzy backstepping controller design for uncertain underactuated robotic systems. Nonlinear Dyn 79(2):1457–1468

    Article  MATH  Google Scholar 

  35. Tong S, Li Y (2013) Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone input. IEEE Trans Fuzzy Syst 21(1):134–146

    Article  Google Scholar 

  36. Tong S, Sui SS, Li Y (2015) Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans Fuzzy Syst 23(4):729–742

    Article  Google Scholar 

  37. Tong SC, Li YM, Feng G, Li TS (2011) Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans Syst Man Cybern Part B 41(4):1124–1135

    Article  Google Scholar 

  38. Li Y, Tong S, Li T (2015) Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans Fuzzy Syst 23(4):1228–1241

    Article  Google Scholar 

  39. Tong S, Li Y, Shi P (2012) Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans Fuzzy Syst 20(4):771–785

    Article  Google Scholar 

  40. Boulkroune A, Bouzeriba A, Hamel S, Bouden T (2014) A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems. Nonlinear Dyn 78(1):433–447

    Article  MathSciNet  MATH  Google Scholar 

  41. Boulkroune A, Bouzeriba A, Hamel S, Bouden T (2015) Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems. Complexity 21(2):180–192

    Article  MathSciNet  MATH  Google Scholar 

  42. Boulkroune A, Tadjine M, M’Saad M, Farza M (2014) Design of a unified adaptive fuzzy observer for uncertain nonlinear systems. Inf Sci 265:139–153

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boulkroune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulkroune, A., M’saad, M. & Farza, M. Adaptive fuzzy system-based variable-structure controller for multivariable nonaffine nonlinear uncertain systems subject to actuator nonlinearities. Neural Comput & Applic 28, 3371–3384 (2017). https://doi.org/10.1007/s00521-016-2241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2241-8

Keywords

Navigation