Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Shrinkage is an important parameter affecting crack development of mortars and concrete. With the occurrence of shrinkage cracks, the concrete starts to be exposed to the corrosion which significantly decreases the durability of concrete or mortars. In this study, the results of free shrinkage tests determining the length changes and ring test determination of the restrained drying shrinkage cracks are used for predicting the crack widths of granulated blast furnace slag fine aggregate mortars using adaptive-network-based fuzzy inference system (ANFIS). Subsequently, replacement ratios, drying time and free shrinkage length changes are used as inputs and crack width as output in order to predict the shrinkage cracking of these mortar types. The experimental test and the prediction results from the ANFIS model are compared with each other. It is clear that ANFIS can be employed directly in the prediction or discussion of the drying shrinkage cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Topçu İB (2006) Materials of construction and concrete. Uğur Offset, Eskişehir

    Google Scholar 

  2. Topçu İB (2006) Concrete technology. Uğur Offset, Eskişehir

    Google Scholar 

  3. Atiş CD, Kiliç A, Sevim UK (2004) Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash. Cem Concr Res 34(1):99–102

    Article  Google Scholar 

  4. Kayali O, Haque MN, Zhu B (1999) Drying shrinkage of fibre reinforced lightweight aggregate concrete containing fly ash. Cem Concr Res 29(11):1835–1840

    Article  Google Scholar 

  5. McCarthy MJ, Dhir RK (2005) Development of high volume fly ash cements for use in concrete construction. Fuel 84(11):1423–1432

    Article  Google Scholar 

  6. Termkhajornkit P, Nawa T, Nakai M, Saito T (2005) Effect of fly ash on autogenous shrinkage. Cem Concr Res 35(3):473–482

    Article  Google Scholar 

  7. Filho RDTP, Ghavami K, Sanjuan MA, England GL (2005) Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem Concr Compos 27(5):537–546

    Article  Google Scholar 

  8. Gesoğlu M, Özturan T, Güneyisi E (2006) Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes. Cem Concr Compos 28(7):598–605

    Article  Google Scholar 

  9. Bissonnette B, Pierre P, Pigeon M (1999) Influence of key parameters on drying shrinkage of cementitious materials. Cem Concr Res 29(10):1655–1662

    Article  Google Scholar 

  10. Jiang Z, Sun Z, Wang P (2005) Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes. Cem Concr Res 35(8):1539–1545

    Article  Google Scholar 

  11. Turatsinze A, Bonnet S, Granju J-L (2007) Potential of rubber aggregates to modify properties of cement based-mortars: improvement in cracking shrinkage resistance. Constr Build Mater 21(1):176–181

    Article  Google Scholar 

  12. Kanna V, Olson RA, Jennings HM (1998) Effect of shrinkage and moisture content on the physical characteristics of blended cement mortars. Cem Concr Res 28(10):1467–1477

    Article  Google Scholar 

  13. Bisschop J, van Mier JGM (2002) How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy. Cem Concr Res 32(2):279–287

    Article  Google Scholar 

  14. Hossain AB, Weiss J (2006) The role of specimen geometry and boundary conditions on stress development and cracking in the restrained ring test. Cem Concr Res 36(1):189–199

    Article  Google Scholar 

  15. Yüksel İ, Özkan Ö, Bilir T (2006) Use of granulated blast furnace slag in concrete as fine aggregate. ACI Mater J 103(3):203–208

    Google Scholar 

  16. Yüksel İ, Bilir T (2007) Usage of industrial by-products to produce plain concrete elements. Constr Build Mater 21(3):686–694

    Article  Google Scholar 

  17. Yüksel İ, Bilir T, Özkan Ö (2007) Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Build Environ 42(7):2651–2659

    Article  Google Scholar 

  18. Topçu İB, Boğa AR, Bilir T (2008) Alkali–silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3. Waste Manag 28(5):878–884

    Article  Google Scholar 

  19. Topçu İB, Bilir T (2007) Effect of slag fineness on durability of mortars. J Zhejiang Univ Sci A 8(11):1725–1730

    Article  Google Scholar 

  20. Topçu İB, Canbaz M (2003) Properties of concrete containing waste glass. Cem Concr Res 34(2):267–274

    Article  Google Scholar 

  21. Yüksel İ, Genç A (2007) Properties of concrete containing non-ground ash and slag as fine aggregate. ACI Mater J 104(4):397–403

    Google Scholar 

  22. Collins F, Sanjayan JG (2000) Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem Concr Res 30(5):791–798

    Article  Google Scholar 

  23. See HT, Attiogbe EK, Miltenberger MA (2003) Shrinkage cracking characteristics of concrete using ring specimens. ACI Mater J 100(3):239–245

    Google Scholar 

  24. Shah SP, Karaguler ME, Sarigaphuti M (1992) Effects of shrinkage-reducing admixtures on restrained shrinkage cracking of concrete. ACI Mater J 89(3):289–295

    Google Scholar 

  25. Appa Rao G (2001) Long-term drying shrinkage of mortar-influence of silica fume and size of fine aggregate. Cem Concr Res 31(2):171–175

    Article  Google Scholar 

  26. Almudaiheem JA, Hansen W (1987) Effect of specimen size and shape on drying shrinkage of concrete. ACI Mater J 84(2):130–135

    Google Scholar 

  27. Mesbah HA, Buyle-Bodin F (1999) Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Constr Build Mater 31(8):439–447

    Article  Google Scholar 

  28. Najm H, Balaguru P (2002) Effect of large-diameter polymeric fibers on shrinkage cracking of cement composites. ACI Mater J 99(4):345–351

    Google Scholar 

  29. Voigt T, Bui VK, Shah SP (2004) Drying shrinkage of concrete reinforced with fibers and welded-wire fabric. ACI Mater J 101(3):233–241

    Google Scholar 

  30. Swamy RN, Stavrides H (1979) Influence of fiber reinforcement on restrained shrinkage and cracking. ACI Mater J 76(3):443–460

    Google Scholar 

  31. Bloom R, Bentur A (1995) Free and restrained shrinkage of normal and high-strength concrete. ACI Mater J 92(2):211–217

    Google Scholar 

  32. El Hindy E, Miao B, Chaallal O, Aitcin P-C (1994) Drying shrinkage of ready-mixed high-performance concrete. ACI Mater J 91(3):300–305

    Google Scholar 

  33. Lopez M, Kahn LF, Kurtis KE (2004) Creep and shrinkage of high-performance lightweight concrete. ACI Mater J 101(5):391–399

    Google Scholar 

  34. Zhang M-H, Li L, Paramasivam P (2005) Shrinkage of high-strength lightweight aggregate concrete exposed to dry environment. ACI Mater J 102(2):86–92

    Google Scholar 

  35. Fernandez-Gomez J, Landsberger GA (2007) Evaluation of shrinkage prediction models for self-consolidating concrete. ACI Mater J 104(5):464–473

    Google Scholar 

  36. Torrenti JM, Granger L, Diruy M, Genin P (1999) Modeling concrete shrinkage under variable ambient conditions. ACI Mater J 96(1):35–39

    Google Scholar 

  37. Collins F, Sanjayan JG (2000) Numerical modeling of alkali-activated slag concrete beams subjected to restrained shrinkage. ACI Mater J 97(5):594–602

    Google Scholar 

  38. Ojdrovic RP, Zarghamee MS (1996) Concrete creep and shrinkage prediction from short-term tests. ACI Mater J 93(2):169–177

    Google Scholar 

  39. Carlson RW, Reading TJ (1988) Model study of shrinkage cracking in concrete building walls. ACI Mater J 85(4):395–404

    Google Scholar 

  40. McDonald DB, Roper H (1993) Accuracy of prediction models for shrinkage of concrete. ACI Mater J 90(3):265–271

    Google Scholar 

  41. Barr B, Hoseinian SB, Beygi MA (2003) Shrinkage of concrete stored in natural environments. Cem Concr Compos 25(1):19–29

    Article  Google Scholar 

  42. Gardner NJ, Lockman MJ (2001) Design provisions for drying shrinkage and creep of normal-strength concrete. ACI Mater J 98(2):159–167

    Google Scholar 

  43. Huo XS, Al-Omaishi N, Tadros MK (2001) Creep, shrinkage, and modulus of elasticity of high-performance concrete. ACI Mater J 98(6):440–449

    Google Scholar 

  44. Rouse JM, Billington SL (2007) Creep and shrinkage of high-performance fiber-reinforced cementitious composites. ACI Mater J 104(2):129–134

    Google Scholar 

  45. Al Rawi RS, Kheder GF (1990) Control of cracking due to volume change in base-restrained concrete members. ACI Mater J 87(4):397–405

    Google Scholar 

  46. Nejadi S, Gilbert I (2004) Shrinkage cracking and crack control in restrained reinforced concrete members. ACI Mater J 101(6):840–845

    Google Scholar 

  47. Shah SP, Ouyang C, Marikunte S, Yang W, Becq-Giraudon E (1998) A method to predict shrinkage cracking of concrete. ACI Mater J 95(4):339–346

    Google Scholar 

  48. Jang RJS, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice-Hall, Upper Saddle River

    Google Scholar 

  49. İphar M, Yavuz M, Ak H (2008) Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Eng Geol 56(1):97–107

    Article  Google Scholar 

  50. Jang RJS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  51. Topçu İB, Sarıdemir M (2008) Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Constr Build Mater 22(4):532–540

    Article  Google Scholar 

  52. Topçu İB, Sarıdemir M (2007) Prediction of waste AAC aggregate concrete properties using artificial neural network and fuzzy logic. Comput Mater Sci 41(1):117–125

    Article  Google Scholar 

  53. Turkish Standards Institute (2002) Turkish standard for methods of testing cement-part 1: determination of strength. Standard no TS EN 196-1

  54. ASTM (2006) Standard test method for length change of hardened hydraulic-cement mortar and concrete. Standard no ASTM C157/C157 M-06

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Gencel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilir, T., Gencel, O. & Topcu, I.B. Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS models. Neural Comput & Applic 27, 2523–2536 (2016). https://doi.org/10.1007/s00521-015-2022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2022-9

Keywords

Navigation