Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The Sierpinski gasket fractal antenna is most popular structure in the domain of fractal antennas. This fractal antenna has multi-band performance, and hence, the design of this antenna for the desired frequencies is a challenging problem. The artificial intelligence tools like artificial neural networks, fuzzy logic systems, bio-inspired optimization techniques are appropriate to provide accurate design solution in such cases. In this paper, three most popular bio-inspired optimization algorithms: genetic algorithms, particle swarm optimization (PSO), and bacterial foraging optimization, have been proposed to solve the design issues of Sierpinski gasket pre-fractal antenna. Their performances are analyzed and are compared with the experimental results. A simplified expression for calculation of resonant frequency of Sierpinski gasket pre-fractal antenna is proposed and is used as the objective function. Finally, the effectiveness is compared on the basis of three different measures: mean absolute percentage error, the average time taken by the models to evaluate the results, and the coefficient of correlation. The results indicate that the PSO algorithm is most suitable for this type of antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dearnley RW, Barel ARF (1989) A comparison of models to determine the resonant frequencies of a rectangular microstrip antenna. IEEE Trans Antennas Propag 37(1):114–118

    Article  Google Scholar 

  2. Patnaik A, Anagnostou DE, Mishra RK, Christodoulou CG, Lyke JC (2004) Applications of neural networks in wireless communications. IEEE Antennas Propagat Mag 46(3):130–137

    Article  Google Scholar 

  3. Patnaik A, Anagnostou D, Christodoulou CG, Lyke JC (2005) A frequency reconfigurable antenna design using neural networks. In: Proceedings of IEEE antennas and propagation society international symposium, Washington, DC, vol 2A, pp 409–412

  4. Werner DH, Werner PL, Church KH (2001) Genetically engineered multiband fractal Antennas. Electron Lett 37(19):1150–1151

    Article  Google Scholar 

  5. Pantoja MF, Ruiz FG, Bretones AR, Garcia SG, Martín RG, Arbesu JMG, Romeu J, Rius JM, Werner PL, Werner DH (2006) GA design of small thin-wire antennas: comparison with Sierpinsky-type prefractal antennas. IEEE Trans Antennas Propag 54(6):1879–1882

    Article  Google Scholar 

  6. Anuradha Patnaik A, Sinha SN (2011) Design of custom-made fractal multi-band antennas using ANN–PSO. IEEE Antennas Propagat Mag 53(4):94–101

    Article  Google Scholar 

  7. Pantoja MF, Ruiz FG, Bretones AR, Martín RG, González-Arbesú JM, Romeu J, Rius JM (2003) GA design of wire pre-fractal antennas and comparison with other Euclidean geometries. IEEE Antennas Wirel Propag Lett 2(1):238–241

    Article  Google Scholar 

  8. Azaro R, Boato G, Donelli M, Franceschini G, Martini A, Massa A (2005) Design of miniaturised ISM-band fractal antenna. Electron Lett 41(14):785–786

    Article  Google Scholar 

  9. Azaro R, Zeni E, Rocca P, Massa A (2007) Design of non-harmonic multi-band pre-fractal antennas. In: Proceedings of IEEE antennas and propagation society international symposium, Honolulu, HI, pp 1613–1616

  10. Azaro R, Debiasi L, Zeni E, Benedetti M, Rocca P, Massa A (2009) A hybrid prefractal three-band antenna for multi standard mobile wireless applications. IEEE Antennas Wirel Propag Lett 8:905–908

    Article  Google Scholar 

  11. Lizzi L, Massa A (2011) Dual-band printed fractal monopole antenna for LTE applications. IEEE Antennas Wirel Propag Lett 10:760–763

    Article  Google Scholar 

  12. Tretyakov SA, Mariotte F, Simovski CR, Kharina TG, Heliot J (1996) Analytical antenna model for chiral scatterers: comparison with numerical and experimental data. IEEE Trans Antennas Propag 44(7):1006–1014

    Article  Google Scholar 

  13. Boeringer DW, Werner DH (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans Antennas Propag 52(3):771–779

    Article  Google Scholar 

  14. Gondal MA, Anees A (2013) Analysis of optimized signal processing algorithms for smart antenna system. Neural Comput Appl 23:1083–1087

    Article  Google Scholar 

  15. Pérez JR, Basterrechea J (2007) Comparison of different heuristic optimization methods for near-field antenna measurements. IEEE Trans Antennas Propag 55(3):549–555

    Article  Google Scholar 

  16. Datta T, Misra IS (2009) A comparative study of optimization techniques in adaptive antenna array processing: the bacteria-foraging algorithm and particle-swarm optimization. IEEE Antennas Propagat Mag 51(6):69–81

    Article  Google Scholar 

  17. Panduro MA, Brizuela CA, Balderas LI, Acosta DA (2009) A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Prog Electromagn Res B 13:171–186

    Article  Google Scholar 

  18. Anagnostou D, Chryssomallis MT, Lyke JC, Christodoulou CG (2003) A CPW Koch dipole slot antenna. In: Proceedings of IEEE topical conference wireless communication technology, pp 337

  19. Anagnostou DE, Zheng G, Feldner L, Chryssomallis MT, Lyke JC, Papapolymerou J, Christodoulou CG (2004) Silicon-etched re-configurable self-similar antenna with RF-MEMS switches. In: Proceedings of IEEE antennas and propagation society international symposium, vol 2, pp 1804–1807

  20. Anagnostou DE, Papapolymerou J, Christodoulou CG, Tentzeris M (2006) A small planar log-periodic Koch-dipole antenna (LPKDA). In: Proceedings of IEEE antennas and propagation society international symposium, Albuquerque, NM, pp 3685–3688

  21. Gheethan AA, Anagnostou DE (2008) Reduced size planar log-periodic dipole arrays (LPDAs) using rectangular meander line elements. In: Proceedings of IEEE antennas and propagation society international symposium, San Diego, CA, pp 1–4

  22. Puente C, Romeu J, Pous R, Garcia X, Benitez F (1996) Fractal multiband antenna based on the Sierpinski gasket. Electron Lett 32(1):1–2

    Article  Google Scholar 

  23. Werner DH, Ganguly S (2003) An overview of fractal antenna engineering research. IEEE Antennas Propagat Mag 45(1):38–57

    Article  Google Scholar 

  24. Puente C, Romeu J, Pous R, Cardama A (1998) On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans Antennas Propag 46(4):517–524

    Article  MathSciNet  MATH  Google Scholar 

  25. Mishra RK, Ghatak R, Poddar D (2008) Design formula for Sierpinski gasket pre-fractal planar-monopole antennas. IEEE Antennas Propagat Mag 50(3):104–107

    Article  Google Scholar 

  26. Weile DS, Michielssen E (1997) Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans Antennas Propag 45(3):343–353

    Article  Google Scholar 

  27. Panda DC, Pattnaik SS, Khuntia B, Neog DK, Devi S (2003) Coupling of ANN with GA for effective optimization of dimensions of rectangular patch antenna on thick substrate microstrip patch antenna on thick substrate. In: Proceedings of international symposium on antennas propagation and EM theory, Beijing, China, pp 720–725

  28. Ozgun O, Mutlu S, Aksun MI, Alatan L (2003) Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm. IEEE Trans Antennas Propag 51(8):1947–1954

    Article  Google Scholar 

  29. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE conference neural network IV, Piscataway, NJ, pp 1942–1948

  30. Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetic. IEEE Trans Antennas Propag 52(2):397–407

    Article  MathSciNet  Google Scholar 

  31. Chen D, Zhao C, Zhang H (2011) An improved cooperative particle swarm optimization and its application. Neural Comput Appl 20:171–182

    Article  Google Scholar 

  32. Liu WC (2005) Design of a multiband CPW-fed monopole antenna using a particle swarm optimization approach. IEEE Trans Antennas Propag 53(10):3273–3279

    Article  Google Scholar 

  33. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    Article  MathSciNet  Google Scholar 

  34. Atasagun Y, Kara Y (2014) Bacterial foraging optimization algorithm for assembly line balancing. Neural Comput Appl 25:237–250

    Article  Google Scholar 

  35. Coelho LS, Silveira CC, Sierakowski CA, Alotto P (2010) Improved bacterial foraging strategy applied to TEAM workshop benchmark problem. IEEE Trans Magn 46(8):2903–2906

    Article  Google Scholar 

  36. Okaeme NA, Zanchetta P (2013) Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives. IEEE Trans Ind Informat 9(2):668–678

    Article  Google Scholar 

  37. Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941

    Article  Google Scholar 

  38. Gollapudi SVRS, Pattnaik SS, Bajpai OP, Devi S, Sagar CV, Pradyumna PK, Bakwad KM (2008) Bacterial foraging optimization technique to calculate resonant frequency of rectangular microstrip antenna. Int J RF Microw Comput Aided Eng 18(4):383–388

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the anonymous reviewers who have given the valuable suggestion to improve this work so that it is presented in its current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder S. Dhaliwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaliwal, B.S., Pattnaik, S.S. Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design. Neural Comput & Applic 27, 585–592 (2016). https://doi.org/10.1007/s00521-015-1879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1879-y

Keywords

Navigation