Abstract
The Sierpinski gasket fractal antenna is most popular structure in the domain of fractal antennas. This fractal antenna has multi-band performance, and hence, the design of this antenna for the desired frequencies is a challenging problem. The artificial intelligence tools like artificial neural networks, fuzzy logic systems, bio-inspired optimization techniques are appropriate to provide accurate design solution in such cases. In this paper, three most popular bio-inspired optimization algorithms: genetic algorithms, particle swarm optimization (PSO), and bacterial foraging optimization, have been proposed to solve the design issues of Sierpinski gasket pre-fractal antenna. Their performances are analyzed and are compared with the experimental results. A simplified expression for calculation of resonant frequency of Sierpinski gasket pre-fractal antenna is proposed and is used as the objective function. Finally, the effectiveness is compared on the basis of three different measures: mean absolute percentage error, the average time taken by the models to evaluate the results, and the coefficient of correlation. The results indicate that the PSO algorithm is most suitable for this type of antenna.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dearnley RW, Barel ARF (1989) A comparison of models to determine the resonant frequencies of a rectangular microstrip antenna. IEEE Trans Antennas Propag 37(1):114–118
Patnaik A, Anagnostou DE, Mishra RK, Christodoulou CG, Lyke JC (2004) Applications of neural networks in wireless communications. IEEE Antennas Propagat Mag 46(3):130–137
Patnaik A, Anagnostou D, Christodoulou CG, Lyke JC (2005) A frequency reconfigurable antenna design using neural networks. In: Proceedings of IEEE antennas and propagation society international symposium, Washington, DC, vol 2A, pp 409–412
Werner DH, Werner PL, Church KH (2001) Genetically engineered multiband fractal Antennas. Electron Lett 37(19):1150–1151
Pantoja MF, Ruiz FG, Bretones AR, Garcia SG, Martín RG, Arbesu JMG, Romeu J, Rius JM, Werner PL, Werner DH (2006) GA design of small thin-wire antennas: comparison with Sierpinsky-type prefractal antennas. IEEE Trans Antennas Propag 54(6):1879–1882
Anuradha Patnaik A, Sinha SN (2011) Design of custom-made fractal multi-band antennas using ANN–PSO. IEEE Antennas Propagat Mag 53(4):94–101
Pantoja MF, Ruiz FG, Bretones AR, Martín RG, González-Arbesú JM, Romeu J, Rius JM (2003) GA design of wire pre-fractal antennas and comparison with other Euclidean geometries. IEEE Antennas Wirel Propag Lett 2(1):238–241
Azaro R, Boato G, Donelli M, Franceschini G, Martini A, Massa A (2005) Design of miniaturised ISM-band fractal antenna. Electron Lett 41(14):785–786
Azaro R, Zeni E, Rocca P, Massa A (2007) Design of non-harmonic multi-band pre-fractal antennas. In: Proceedings of IEEE antennas and propagation society international symposium, Honolulu, HI, pp 1613–1616
Azaro R, Debiasi L, Zeni E, Benedetti M, Rocca P, Massa A (2009) A hybrid prefractal three-band antenna for multi standard mobile wireless applications. IEEE Antennas Wirel Propag Lett 8:905–908
Lizzi L, Massa A (2011) Dual-band printed fractal monopole antenna for LTE applications. IEEE Antennas Wirel Propag Lett 10:760–763
Tretyakov SA, Mariotte F, Simovski CR, Kharina TG, Heliot J (1996) Analytical antenna model for chiral scatterers: comparison with numerical and experimental data. IEEE Trans Antennas Propag 44(7):1006–1014
Boeringer DW, Werner DH (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans Antennas Propag 52(3):771–779
Gondal MA, Anees A (2013) Analysis of optimized signal processing algorithms for smart antenna system. Neural Comput Appl 23:1083–1087
Pérez JR, Basterrechea J (2007) Comparison of different heuristic optimization methods for near-field antenna measurements. IEEE Trans Antennas Propag 55(3):549–555
Datta T, Misra IS (2009) A comparative study of optimization techniques in adaptive antenna array processing: the bacteria-foraging algorithm and particle-swarm optimization. IEEE Antennas Propagat Mag 51(6):69–81
Panduro MA, Brizuela CA, Balderas LI, Acosta DA (2009) A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Prog Electromagn Res B 13:171–186
Anagnostou D, Chryssomallis MT, Lyke JC, Christodoulou CG (2003) A CPW Koch dipole slot antenna. In: Proceedings of IEEE topical conference wireless communication technology, pp 337
Anagnostou DE, Zheng G, Feldner L, Chryssomallis MT, Lyke JC, Papapolymerou J, Christodoulou CG (2004) Silicon-etched re-configurable self-similar antenna with RF-MEMS switches. In: Proceedings of IEEE antennas and propagation society international symposium, vol 2, pp 1804–1807
Anagnostou DE, Papapolymerou J, Christodoulou CG, Tentzeris M (2006) A small planar log-periodic Koch-dipole antenna (LPKDA). In: Proceedings of IEEE antennas and propagation society international symposium, Albuquerque, NM, pp 3685–3688
Gheethan AA, Anagnostou DE (2008) Reduced size planar log-periodic dipole arrays (LPDAs) using rectangular meander line elements. In: Proceedings of IEEE antennas and propagation society international symposium, San Diego, CA, pp 1–4
Puente C, Romeu J, Pous R, Garcia X, Benitez F (1996) Fractal multiband antenna based on the Sierpinski gasket. Electron Lett 32(1):1–2
Werner DH, Ganguly S (2003) An overview of fractal antenna engineering research. IEEE Antennas Propagat Mag 45(1):38–57
Puente C, Romeu J, Pous R, Cardama A (1998) On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans Antennas Propag 46(4):517–524
Mishra RK, Ghatak R, Poddar D (2008) Design formula for Sierpinski gasket pre-fractal planar-monopole antennas. IEEE Antennas Propagat Mag 50(3):104–107
Weile DS, Michielssen E (1997) Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans Antennas Propag 45(3):343–353
Panda DC, Pattnaik SS, Khuntia B, Neog DK, Devi S (2003) Coupling of ANN with GA for effective optimization of dimensions of rectangular patch antenna on thick substrate microstrip patch antenna on thick substrate. In: Proceedings of international symposium on antennas propagation and EM theory, Beijing, China, pp 720–725
Ozgun O, Mutlu S, Aksun MI, Alatan L (2003) Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm. IEEE Trans Antennas Propag 51(8):1947–1954
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE conference neural network IV, Piscataway, NJ, pp 1942–1948
Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetic. IEEE Trans Antennas Propag 52(2):397–407
Chen D, Zhao C, Zhang H (2011) An improved cooperative particle swarm optimization and its application. Neural Comput Appl 20:171–182
Liu WC (2005) Design of a multiband CPW-fed monopole antenna using a particle swarm optimization approach. IEEE Trans Antennas Propag 53(10):3273–3279
Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67
Atasagun Y, Kara Y (2014) Bacterial foraging optimization algorithm for assembly line balancing. Neural Comput Appl 25:237–250
Coelho LS, Silveira CC, Sierakowski CA, Alotto P (2010) Improved bacterial foraging strategy applied to TEAM workshop benchmark problem. IEEE Trans Magn 46(8):2903–2906
Okaeme NA, Zanchetta P (2013) Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives. IEEE Trans Ind Informat 9(2):668–678
Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941
Gollapudi SVRS, Pattnaik SS, Bajpai OP, Devi S, Sagar CV, Pradyumna PK, Bakwad KM (2008) Bacterial foraging optimization technique to calculate resonant frequency of rectangular microstrip antenna. Int J RF Microw Comput Aided Eng 18(4):383–388
Acknowledgments
The authors are thankful to the anonymous reviewers who have given the valuable suggestion to improve this work so that it is presented in its current form.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dhaliwal, B.S., Pattnaik, S.S. Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design. Neural Comput & Applic 27, 585–592 (2016). https://doi.org/10.1007/s00521-015-1879-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-015-1879-y