Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust adaptive NN control for a class of uncertain discrete-time nonlinear MIMO systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A robust adaptive NN output feedback control is proposed to control a class of uncertain discrete-time nonlinear multi-input–multi-output (MIMO) systems. The high-order neural networks are utilized to approximate the unknown nonlinear functions in the systems. Compared with the previous research for discrete-time MIMO systems, robustness of the proposed adaptive algorithm is obvious improved. Using Lyapunov stability theorem, the results show all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking errors converge to a small neighborhood of zero by choosing the design parameters appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang LX (1992) Fuzzy systems are universal approximators. In: Proceedings of the IEEE international conference on fuzzy systems, San Diego, pp 1163–1170

  2. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function network. Neural Comput 3:246–257

    Article  Google Scholar 

  3. Ge SS, Huang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer, Norwell

    Google Scholar 

  4. Tong SC, He XL, Zhang HG (2009) A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans Fuzzy Syst 17(5):1059–1069

    Article  Google Scholar 

  5. Tong SC, Li CY, Li YM (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160(19):2755–2775

    Article  MathSciNet  MATH  Google Scholar 

  6. Li TS, Tong SC, Feng G (2010) A novel robust adaptive-fuzzy-tracking control for a class of nonlinear multi-input/multi-output systems. IEEE Trans Fuzzy Syst 18(1):150–160

    Article  Google Scholar 

  7. Chen WS, Li JM (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern B 38(1):258–266

    Article  Google Scholar 

  8. Li HX, Tong SC (2003) A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans Fuzzy Syst 11(1):24–34

    Article  Google Scholar 

  9. Chen B, Liu XP, Liu KF, Lin C (2009) Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6):1530–1535

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu YJ, Wang W, Tong SC, Liu YS (2010) Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cybern Part A Syst Hum 40(1):170–184

    Article  Google Scholar 

  11. Chen WS, Jiao LC, Li RH, Li J (2010) Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans Fuzzy Syst 18(4):674–685

    Article  Google Scholar 

  12. Chen WS, Jiao LC, Wu JS (2011) Decentralized backstepping output-feedback control for stochastic interconnected systems with time-varying delays using neural networks. Neural Comput Appl. doi:10.1007/s00521-011-0590-x

  13. Chen M, Ge SS, Ren BB (2010) Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neural Netw 21(5):796–812

    Article  Google Scholar 

  14. Li ZJ, Chen WD (2008) Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng Appl Artif Intell 21(7):985–1000

    Article  Google Scholar 

  15. Li ZJ, Xu CQ (2009) Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums. Fuzzy Sets Syst 160(12):1787–1803

    Article  MATH  Google Scholar 

  16. Liu YJ, Tong SC, Wang W (2009) Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst 160(9):2727–2754

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu YJ, Wang W (2007) Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf Sci 177(18):3901–3917

    Article  MATH  Google Scholar 

  18. Ge SS, Yi GY, Lee TH (2003) Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica 39(5):807–819

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu YJ, Wen GX, Tong SC (2010) Direct adaptive NN control for a class of discrete-time nonlinear strict-feedback systems. Neurocomputing 73:2498–2505

    Article  Google Scholar 

  20. Yang CG, Ge SS, Xiang C, Chai TY, Lee TH (2008) Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw 19(11):1873–1886

    Article  Google Scholar 

  21. Yang CG, Li YN, Ge SS, Lee TH (2010) Adaptive predictive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings. American control conference, pp 2428–2433

  22. Yang CG, Li YN, Ge SS, Lee TH (2010) Adaptive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings. Int J Control 83(10):2120–2133

    Article  MathSciNet  MATH  Google Scholar 

  23. Li YN, Yang CG, Ge SS, Lee TH (2011) Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions. IEEE Trans Syst Man Cybern B 41(2):507–517

    Article  Google Scholar 

  24. Liu YJ, Chen CLP, Wen GX, Tong SC (2011) Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans Neural Netw 22(7):1162–1167

    Article  Google Scholar 

  25. Zhang J, Ge SS, Lee TL (2005) Output feedback control of a class of discrete MIMO nonlinear systems with triangular form inputs. IEEE Trans Neural Netw 16(6):1491–1503

    Article  Google Scholar 

  26. Wen GX, Liu YJ, Chen CLP (2011) Direct adaptive robust NN control for a class of discrete-time nonlinear strict-feedback SISO systems. Neural Comput Appl. doi:10.1007/s00521-011-0596-4

  27. Liu YJ, Tong SC, Li TS (2011) Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems. Fuzzy Sets Syst 164(1):25–44

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu YJ, Tong SC, Wang D, Li TS, Chen CLP (2011) Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans Neural Netw 22(8):1328–1334

    Article  Google Scholar 

  29. Tong SC, Li HX, Wang W (2004) Observer-based adaptive fuzzy control for SISO nonlinear systems. Fuzzy Sets Syst 148(3):355–376

    Article  MathSciNet  MATH  Google Scholar 

  30. Tong SC, Chen B, Wang YF (2005) Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst 156(2):285–299

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the valuable comments and also appreciate the constructive suggestions from the anonymous referees. This research was supported by the Natural Science Foundation of China under Grant 61074014, 61104017, and 60874056; The Natural Science Foundation of Liaoning Province under Grant 20102095; Program for Liaoning Excellent Talents in University under grant LJQ2011064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Liu, YJ. & Li, DJ. Robust adaptive NN control for a class of uncertain discrete-time nonlinear MIMO systems. Neural Comput & Applic 22, 747–754 (2013). https://doi.org/10.1007/s00521-011-0766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0766-4

Keywords

Navigation