Abstract
In this paper we consider the nonlinear fractional Schrödinger equations in presence of a critical power nonlinearity and a subcritical term
where \(s\in (0,1), 2^*_s=2N/(N-2s), N>2s, (-\Delta )^s\) is the fractional laplacian and f(u) is of subcritical nonlinearity, and \(\varepsilon \) is a positive parameter. Under a local condition imposed on the potential V, we relate the number of positive solutions with the topology of the set where the potential attains its minimum. In the proofs we apply variational methods, penalization techniques and Ljusternik–Schnirelmann theory.
Similar content being viewed by others
References
Ambrosetti, A., Rabinowitz, P.H.: Dual varitional methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
Alves, C.O., Figueiredo, G.M.: Multiplicity of positive solutions for a quasilinear problem in \(\mathbb{R}^N\) via penalization method. Adv. Nonlinear Studies 5, 551–572 (2005)
Alves, C.O., Figueiredo, G.M., Furtado, M.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Commun. Partial Differ. Equ. 36, 1565–1586 (2011)
Alves, C.O., Miyagaki, O.H.: Existence and concentration of solutions for a class of fractional elliptic equation in \(\mathbb{R}^N\) via penalization method (2015). arXiv:1508.03964vl [math.AP]
Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(\mathbb{R}^N\). Birkhäuser, Basel (2006)
Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)
Barris, B., Colorado, E., de Dablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian. J. Differ. Equ. 252, 6133–6162 (2012)
Barris, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave–convex power nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 875–900 (2015)
Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A. Math. 142, 39–71 (2013)
Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)
Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)
Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)
Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)
Chen, G.: Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlinearity 28, 927–949 (2015)
Chen, G., Zheng, Y.: Concentration phenomena for fractional nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 13, 2359–2376 (2014)
Cotsiolis, A., Tavoularis, N.: Best constant for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)
Davila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858–892 (2014)
del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)
Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the hole of \(\mathbb{R}^N\) (2015). arXiv:1506.01748vl [math.AP]
do Ó, J.M., Miyagaki, O.H., Squassina, M.: Critical and subcritical fractional problems with vanishing potentials (2014). arXiv:1410.0843 [math.AP]
Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
Fall, M.M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28, 1937–1961 (2015)
Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142A, 1237–1262 (2012)
Figueiredo, G.M., Santos Junior, J.R.: Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via pennalization method. ESAIM: COCV 20, 389–415 (2014)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order, Reprint of the 1998th edn. Classics in Mathematics, Springer, Berlin (2001)
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hithiker’s guide to the frctional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)
Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16, 1111–1171 (2014)
Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108–056114 (2002)
Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)
Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Math. Iberoam. 1(1), 145–201 (1985)
Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Math. Iberoam. 1(2), 45–121 (1985)
Moser, J.: A new proof of Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)
Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)
Seok, J.: Spike-layer solutions to nonlinear fractional Schrödinger equations with almost optimal nonlinearities. Electron. J. Differ. Equ. 2015(196), 1–19 (2015)
Shang, X., Zhang, J.: On fractional Schrödinger equation in \(\mathbb{R}^N\) with critical growth. J. Math. Phys. 54, 121502 (2013)
Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). J. Math. Phys. 54, 031501 (2013)
Servadei, R., Valdinoci, E.: A Brezis-Nirenberg result for non-local critical equations in lower dimension. Commun. Pure Appl. Anal. 12, 2445–2464 (2013)
Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)
Seira, J., Ros-Oton, X.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)
Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Montreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 2314–2351. Inernational Press, Boston (2010)
Tan, J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 36, 21–41 (2011)
Willem, M.: Minimax Theorems. Birckhäuser, Boston (1996)
Acknowledgments
The authors would like to express their sincere gratitude to the referee for careful reading the manuscript and valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Rabinowitz.
X. He is supported by NSFC (11371212, 10601063, 11271386) while W. Zou by NSFC (11371212, 11271386).
Rights and permissions
About this article
Cite this article
He, X., Zou, W. Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. 55, 91 (2016). https://doi.org/10.1007/s00526-016-1045-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00526-016-1045-0