Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Boundary integral equation methods for inverse problems in electrical engineering

Randintegralmethoden zur Lösung inverser Probleme in der Elektrotechnik

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

Solving inverse problems gets more and more important in the computer simulation of technical processes, as for example in electrical engineering. Here, we present some methods of shape reconstruction from electrical capacitance tomography measurement data. To minimize the cost functional, we need to calculate the corresponding shape derivatives. Fast boundary element methods are used for solving the appropriate forward problems to reduce the quadratic effort to an almost linear one.

Zusammenfassung

Die Lösung inverser Probleme spielt eine immer wichtigere Rolle in der Computersimulation technischer Vorgänge, so auch in der Elektrotechnik. In diesem Beitrag werden einige Lösungsansätze zur Gebietsrekonstruktion aus ermittelten Messdaten der elektrischen Kapazitätstomografie dargestellt. Die Minimierung des Kostenfunktionals erfordert die Berechnung entsprechender Gebietsableitungen. Zur Lösung der zugehörigen Vorwärtsprobleme werden hier schnelle Randelementmethoden eingesetzt, die den sonst quadratischen Aufwand auf ein fast lineares Verhalten reduzieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bebendorf, M., Rjasanow, S. (2003): Adaptive low-rank approximation of collocation matrices. Computing 70(1): 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  • Burger, M. (2001): A level set method for Inverse. Probl. Inverse. Probl. 17: 1327–1355.

    Article  MATH  MathSciNet  Google Scholar 

  • Colton, D. L., Kress, R. (1983): Integral equation methods in scattering theory. Pure and Applied Mathematics, New York: John Wiley & Sons Inc.

    MATH  Google Scholar 

  • Dahmen, W., Prößdorf, S., Schneider, R. (1993): Wavelet approximation methods for pseudodifferential equations. II: Matrix compression and fast solution. Adv. Comput. Math. 1(3–4): 259–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Delfour, M. C., Zolesio, J.-P. (1992): Shapes and geometries. (Advances in Design and Control). Vol. 4. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

  • Dorn, A., Miller, E. L., Rappaport, C. M. (2000): A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse. Probl. 16: 1119–1156.

    Article  MATH  MathSciNet  Google Scholar 

  • Dorn, O., Lesselier, D. (2006): Level set methods for inverse scattering. Inverse. Probl. 22: R67–R131.

    Article  MATH  MathSciNet  Google Scholar 

  • Engl, H. W., Hanke, M., Neubauer, A. (1996): Regularization of Inverse. Probl. Dodrecht, Boston, London: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Eppler, K., Harbrecht, H. (2006): Shape optimization for 3D electrical impedance tomography. In: Glowinski, R., Zolesio, J.-P. (eds.) Free and Moving Boundaries. Analysis, Simulation and Control, Lecture Notes in Pure and Applied Mathematics, Vol. 252, Boca Raton, FL: Taylor & Francis/CRC Press.

    Google Scholar 

  • Greengard, L., Rokhlin, V. (1987): A fast algorithm for particle simulations. J. Comput. Phys. 73: 325–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Hackbusch, W. (1999): A sparse matrix arithmetic based on \({\cal H}\)-matrices. I: Introduction to \({\cal H}\)-matrices. Computing 62(2): 89–108.

    Article  MATH  MathSciNet  Google Scholar 

  • Hackbusch, W., Nowak, Z. P. (1989): On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4): 463–491.

    Article  MATH  MathSciNet  Google Scholar 

  • Harbrecht, H., Hohage, T. (to appear): Fast methods for Three-Dimensional Inverse Obstacle Scattering Problems. J. Int. Eq. Appl., to appear.

  • Hettlich, E., Rundell, W. (1996): Iterative methods for the reconstruction of an inverse problem. Inverse. Probl. 12: 251–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Hettlich, F., Rundell, W. (1998): The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Probl. 14: 67–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Hintermüller, M., Ring, W. (2003): A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64: 442–467 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, S. M., Plaskowski, A. B., Xie, C. G., Beck, M. S. (1988): Capacitance-based tomographic fbw imaging system. Electron. Lett. 24(7): 418–419.

    Article  Google Scholar 

  • Ito, K., Kunisch, K., Li, Z. (2001): Level-set function approach to an inverse interface problem. Inverse. Probl. 17: 1225–1242.

    Article  MATH  MathSciNet  Google Scholar 

  • Kirsch, A. (1992): The domain derivative and two applications in inverse scattering theory. Inverse. Probl. 9: 81–96.

    Article  MathSciNet  Google Scholar 

  • Kortschak, B., Brandstätter, B. (2005): A FEM-BEM approach using Level-Sets for Electrical Capacitance Tomography. COMPEL International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 24(2): 591–600.

    Article  MATH  Google Scholar 

  • Langer, U., Of, G., Steinbach, O., Zulehner, W. (2007): Inexact Data-Sparse Boundary Element Tearing and Interconnecting Methods. SIAM J. Scientific Computing 29(1): 290–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Langer, U., Steinbach, O. (2005): Coupled boundary and finite element tearing and interconnecting methods. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, Heidelberg: Springer, 40: 83–97.

    Chapter  Google Scholar 

  • Litman, A., Lesselier, D., Santosa, F. (1998): Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set. Inverse Probl. 14: 685–706.

    Article  MATH  MathSciNet  Google Scholar 

  • Nishimura, N. (2002): Fast multipole accelerated boundary integral equation methods. Applied Mechanics Reviews 55(4): 299–324.

    Article  Google Scholar 

  • Of, G., Steinbach, O., Wendland, W. L. (2005): Applications of a fast multipole Galerkin boundary element method in linear elastostatics. Comput. Visual. Sci. 8: 201–209.

    Article  MathSciNet  Google Scholar 

  • Of, G., Steinbach, O., Wendland, W. L. (2006): The fast multipole method for the symmetric boundary integral formulation. IMA J. Numer. Anal. 26: 272–296.

    Article  MATH  MathSciNet  Google Scholar 

  • Osher, S., Fedkiw, R. (2003): Level set methods and dynamic implicit surfaces. (Applied Mathematical Sciences). Vol. 153. New York: Springer.

    Google Scholar 

  • Osher, S., Sethian, J. A. (1988): Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phy. 1: 12–49.

    Article  MathSciNet  Google Scholar 

  • Pironneau, O. (1984): Optimal shape design for elliptic systems. (Springer Series in Computational Physics). New York: Springer.

    Google Scholar 

  • Rjasanow, S., Steinbach, O. (2007): The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering. New York: Springer.

    MATH  Google Scholar 

  • Santosa, F. (1996): A level-set approach for Inverse. Probl. involving obstacles. ESAIM Controle Optim. Calc. Var. 1: 17–33 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  • Sauter, S., Schwab, C. (2004): Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen, Teubner, Stuttgart.

    MATH  Google Scholar 

  • Sokolowski, J., Zolesio, J.-P. (1992): Introduction to shape optimization. (Springer Series in Computational Mathematics). Vol. 16. Berlin: Springer.

    Google Scholar 

  • Steinbach, O. (2003a): Stability estimates for hybrid coupled domain decomposition methods. Lecture Notes in Mathematics 1809, Berlin: Springer.

    MATH  Google Scholar 

  • Steinbach, O. (2003b): Numerische Näherungsverfahren für elliptische Randwert-probleme. Finite Elemente und Randelemente. Stuttgart, Leipzig, Wiesbaden: B. G. Teubner.

    Google Scholar 

  • Toselli, A., Widlund, O. (2005): Domain decomposition methods – algorithms and theory. (Springer Series in Computational Mathematics 34) Berlin: Springer.

    Google Scholar 

  • Wegleiter, H., Fuchs, A., Holler, G., Kortschak, B. (2005): Analysis of hardware concepts for electrical capacitance tomography applications. Sensors, 2005, IEEE, 30 Oct. 3 Nov. 2005.

  • Wohlmuth, B. (2001): Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Computational Science and Engineering 17. Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Of, G., Schwaigkofler, A. & Steinbach, O. Boundary integral equation methods for inverse problems in electrical engineering. Elektrotech. Inftech. 124, 254–259 (2007). https://doi.org/10.1007/s00502-007-0451-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-007-0451-6

Keywords

Schlüsselwörter

Navigation