Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Recycling of waste materials based on decision support system using picture fuzzy Dombi Bonferroni means

  • Foundation, algebraic, and analytical methods in soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A picture fuzzy set (PFS) is the extended version of an intuitionistic fuzzy set (IFS) and can deal with dubious and imprecision information. Dombi aggregation models are powerful mathematical tools utilized to aggregate human opinions and information in different fields, including social networking, data analysis, architecture, and neurosciences. Bonferroni means (BM) and geometric Bonferroni means (GBM) operators are allowed to define interrelationships among input arguments and play an extensive role in multi-attribute group decision-making (MAGDM) problems. In this article, we anticipated some robust aggregation operators (AOs) of PFSs based on Dombi aggregation models, namely “picture fuzzy Dombi Bonferroni mean” (PFDBM), “picture fuzzy Dombi weighted Bonferroni mean” (PFDWBM), “picture fuzzy Dombi geometric Bonferroni mean” (PFDGBM), and picture fuzzy Dombi weighted geometric Bonferroni mean” (PFDWGBM) operators. Some appropriate characteristics and special cases of our proposed methodologies are also presented. An algorithm of the MAGDM problem is also characterized to resolve complex real-life situations. Moreover, we also determined a practical example of the waste materials to evaluate a suitable recycling machine using our developed methodologies. To ratify the reliability and versatility of our current approaches, by contrasting the findings of existing approaches with the results of developed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

All data are included in the manuscript. However, the reader may contact the corresponding author for more details on the data.

References

  • Abbasi S, Erdebilli B (2023) Green closed-loop supply chain networks’ response to various carbon policies during COVID-19. Sustainability 15(4):3677

    Article  CAS  Google Scholar 

  • Abbasi S, Khalili HA, Daneshmand-Mehr M, Hajiaghaei-Keshteli M (2022b) Performance measurement of the sustainable supply chain during the COVID-19 pandemic: a real-life case study. Found Comput Decis Sci 47(4):327–358

    Article  Google Scholar 

  • Abbasi S (2023) Environmental impact assessment with rapid impact assessment matrix method during the COVID-19 pandemic: a case study in Tehran

  • Abbasi S, Choukolaei HA (2023) A systematic review of green supply chain network design literature focusing on carbon policy, Decis Anal J 100189

  • Abbasi S, Daneshmand-Mehr M, Ghane Kanafi A (2021) The sustainable supply chain of CO2 emissions during the coronavirus disease (COVID-19) pandemic, J Ind Eng Int 17(4): 83–108

  • Abbasi S, Daneshmand-Mehr M, Ghane Kanafi A (2022) Designing sustainable recovery network of end-of-life product during the COVID-19 pandemic: A real and applied case study, Discrete Dyn Nat Soc vol 2022

  • Abbasi S, Sıcakyüz Ç, Erdebilli B (2023) Designing the home healthcare supply chain during a health crisis. J Eng Res p 100098

  • Abbasi S, Daneshmand-Mehr M, Ghane Kanafi A (2023) Green closed-loop supply chain network design during the coronavirus (COVID-19) pandemic: a case study in the Iranian Automotive Industry. Environ Model Assess 28(1): 69–103

  • Abbasi S, Daneshmand-Mehr M, Ghane K (2023) Designing a tri-objective, sustainable, closed-loop, and multi-echelon supply chain during the COVID-19 and lockdowns. Found Comput Decis Sci 48(1)

  • Akram M, Shahzadi G (2021) A hybrid decision-making model under q-rung orthopair fuzzy Yager aggregation operators. Granul Comput 6(4):763–777

    Article  Google Scholar 

  • Akram M, Dudek WA, Dar JM (2019) Pythagorean Dombi fuzzy aggregation operators with application in multicriteria decision-making. Int J Intell Syst 34(11):3000–3019

    Article  Google Scholar 

  • Akram M, Peng X, Al-Kenani AN, Sattar A (2020) Prioritized weighted aggregation operators under complex Pythagorean fuzzy information. J Intell Fuzzy Syst 39(3):4763–4783

    Article  Google Scholar 

  • Akram M, Ali U, Santos-García G, Niaz Z (2023) 2-tuple linguistic Fermatean fuzzy MAGDM based on the WASPAS method for selection of solid waste disposal location. Math Biosci Eng 20(2):3811–3837

    Article  PubMed  Google Scholar 

  • Ali A, Ullah K, Hussain A (2023) An approach to multi-attribute decision-making based on intuitionistic fuzzy soft information and Aczel-Alsina operational laws. J Decis Anal Intell Comput 3(1):80–89

    Article  Google Scholar 

  • Ali Z, Mahmood T, Yang M-S (2020) TOPSIS Method based on complex spherical fuzzy sets with bonferroni mean operators. Mathematics 8(10), Art. no. 10, https://doi.org/10.3390/math8101739.

  • Al-Quran A (2021) A new multi attribute decision making method based on the T-spherical hesitant fuzzy sets. IEEE Access 9:156200–156210. https://doi.org/10.1109/ACCESS.2021.3128953

    Article  Google Scholar 

  • Anwar MS (2019) Modeling and Numerical Simulations of Some Fractional Nonlinear Viscoelastic Flow Problems. PhD Diss Lahore Univ. Manag. Sci

  • Anwar MS (2020) Numerical study of transport phenomena in a nanofluid using fractional relaxation times in Buongiorno model. Phys Scr 95(3):035211

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Anwar MS, Irfan M, Hussain M, Muhammad T, Hussain Z (2022) Heat transfer in a fractional nanofluid flow through a permeable medium. Math. Probl. Eng., 2022.

  • Arabahmadi R, Mohammadi M, Samizadeh M, Rabbani M, Gharibi K (2023) Facility location optimization for technical inspection centers using multi-objective mathematical modeling considering uncertainty. J Soft Comput Decision Anal 1(1):181–208

    Article  Google Scholar 

  • Arora R (2020) Intuitionistic Fuzzy Soft Aggregation Operator Based on Einstein Norms and Its Applications in Decision-Making. In: Intelligent Systems Design and Applications, A. Abraham, A. K. Cherukuri, P. Melin, and N. Gandhi, Eds., in Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, pp 998–1008. https://doi.org/10.1007/978-3-030-16657-1_93.

  • Ashraf A, Ullah K, Hussain A, Bari M (2022) Interval-valued picture fuzzy maclaurin symmetric mean operator with application in multiple attribute decision-making. Reports Mech Eng 3(1): 210–226. https://doi.org/10.31181/rme20020042022a.

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MathSciNet  Google Scholar 

  • Atanassov KT (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33(1):37–45

    Article  MathSciNet  Google Scholar 

  • Azeem W, Mahmood W, Mahmood T, Ali Z, Naeem M (2023) Analysis of Einstein aggregation operators based on complex intuitionistic fuzzy sets and their applications in multi-attribute decision-making. AIMS Math 8(3):6036–6063

    Article  Google Scholar 

  • Baby R et al (2023) The impact of slip mechanisms on the flow of hybrid nanofluid past a wedge subjected to thermal and solutal stratification. Int J Mod Phys B 37(15):2350145

    Article  ADS  CAS  Google Scholar 

  • Bamigboye GO et al (2021) Waste materials in highway applications: an overview on generation and utilization implications on sustainability. J Clean Prod 283:124581. https://doi.org/10.1016/j.jclepro.2020.124581

    Article  Google Scholar 

  • Bányai Á (2023) Decision making in operator-machine assignment problems: an optimization approach in U-shaped production lines. Decision Making 6(2): 620–638. https://doi.org/10.31181/dmame622023808.

  • Bao Z, Lu W (2023) Applicability of the environmental Kuznets curve to construction waste management: a panel analysis of 27 European economies. Resour Conserv Recycl 188:106667

    Article  Google Scholar 

  • Baskar C, Ramakrishna S, Baskar S, Sharma R, Chinnappan A, Sehrawat R (2022) Handbook of Solid Waste Management: Sustainability Through Circular Economy. Springer

  • Bonferroni C (1950) Sulle medie multiple di potenze. Boll Dellunione Mat Ital 5(3–4):267–270

    MathSciNet  Google Scholar 

  • Chakraborty S, Saha AK (2023) Novel Fermatean Fuzzy Bonferroni Mean aggregation operators for selecting optimal health care waste treatment technology. Eng Appl Artif Intell 119:105752

    Article  Google Scholar 

  • Cuong BC (2013) Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems with applications, Inst Math Hanoi.

  • Cuong B (2015) Picture fuzzy sets. J Comput Sci Cybern vol 30, https://doi.org/10.15625/1813-9663/30/4/5032

  • Dabic-Miletic S, Simic V (2023) Smart and sustainable waste tire management: decision-making challenges and future directions. Decision Making Advances, 1(1):10–16. https://doi.org/10.31181/v120232.

  • Deveci M, Gokasar I, Pamucar D, Chen Y, Coffman D (2023) Sustainable E-scooter parking operation in urban areas using fuzzy Dombi based RAFSI model. Sustain Cities Soc 91:104426. https://doi.org/10.1016/j.scs.2023.104426

    Article  Google Scholar 

  • Dinçer H, Yüksel S, Eti S (2023) Identifying the right policies for increasing the efficiency of the renewable energy transition with a novel fuzzy decision-making model. J Soft Comput Decision Anal 1(1):50–62

    Article  Google Scholar 

  • Ding Z, Hu H, Cadotte MW, Liang J, Hu Y, Si X (2021) Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography 44(9):1403–1417. https://doi.org/10.1111/ecog.05660

    Article  ADS  Google Scholar 

  • Emrouznejad A, Abbasi S, Sıcakyüz Ç (2023) Supply chain risk management: a content analysis-based review of existing and emerging topics. Supply Chain Anal 100031

  • Garg H (2017) Some picture fuzzy aggregation operators and their applications to multicriteria decision-making. Arab J Sci Eng 42(12):5275–5290

    Article  MathSciNet  Google Scholar 

  • Hussain Z, Alshomrani AS, Muhammad T, Anwar MS (2022b) Entropy analysis in mixed convective flow of hybrid nanofluid subject to melting heat and chemical reactions. Case Stud Therm Eng 34:101972

    Article  Google Scholar 

  • Hussain M, Ranjha QA, Anwar MS, Jahan S, Ali A (2022c) Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects. J Taiwan Inst Chem Eng 139:104510

    Article  CAS  Google Scholar 

  • Hussain A, Ullah K, Pamucar D, \DJor\dje Vranješ (2022) A multi-attribute decision-making approach for the analysis of vendor management using novel complex picture fuzzy hamy mean operators, Electronics, 11(23): 3841

  • Hussain Z, Bashir Z, Anwar MS (2022) Analysis of nanofluid flow subject to velocity slip and Joule heating over a nonlinear stretching Riga plate with varying thickness. Waves Random Complex Media, pp 1–17

  • Hussain A, Ullah K, Pamucar D, Haleemzai I, Tatić D (2023) Assessment of solar panel using multiattribute decision-making approach based on intuitionistic fuzzy aczel alsina heronian mean operator, Int J Intell Syst vol 2023

  • A. Hussain, K. Ullah, M. Mubasher, T. Senapati, and S. Moslem, “Interval-Valued Pythagorean Fuzzy Information Aggregation Based on Aczel-Alsina Operations and Their Application in Multiple Attribute Decision Making,” IEEE Access, 2023.

  • Hussain A, Ullah K, Tehreem, Senapati T, Moslem S A robust decision-making approach for supplier selection using complex picture fuzzy information involving prioritization of attributes. IEEE Access pp 1–1, 2023, https://doi.org/10.1109/ACCESS.2023.3308030.

  • Hussain A, Ullah K, Senapati T, Moslem S (2023) Complex spherical fuzzy Aczel Alsina aggregation operators and their application in assessment of electric cars, Heliyon

  • Irfan M, Anwar MS, Sardar H, Khan M, Khan WA (2022) Energy transport and effectiveness of thermo-sloutal time’s relaxation theory in Carreau fluid with variable mass diffusivity, Math Probl Eng vol 2022

  • Irfan M, Sunthrayuth P, Ali Pasha A, Anwar MS, Azeem Khan W (2022) Phenomena of thermo-sloutal time’s relaxation in mixed convection Carreau fluid with heat sink/source. Waves Random Complex Media, pp 1–13

  • Jana C, Senapati T, Pal M, Yager RR (2019) Picture fuzzy Dombi aggregation operators: application to MADM process. Appl Soft Comput 74:99–109

    Article  Google Scholar 

  • Jin M, Li B, Xiong Y, Chakraborty R, Zhou Y (2023) Implications of coproduction technology on waste management: Who can benefit from the coproduct made of leftover materials? Eur J Oper Res 307(3):1248–1259

    Article  MathSciNet  Google Scholar 

  • Johansson JG, Björklund AE (2010) Reducing life cycle environmental impacts of waste electrical and electronic equipment recycling: case study on dishwashers. J Ind Ecol 14(2):258–269

    Article  Google Scholar 

  • Joshi BP, Gegov A (2020) Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems. Int J Intell Syst 35(1):125–149

    Article  Google Scholar 

  • Khalil AM, Li S-G, Garg H, Li H, Ma S (2019) New operations on interval-valued picture fuzzy set, interval-valued picture fuzzy soft set and their applications. IEEE Access 7:51236–51253. https://doi.org/10.1109/ACCESS.2019.2910844

    Article  Google Scholar 

  • Khan S, Abdullah S, Ashraf S (2019) Picture fuzzy aggregation information based on Einstein operations and their application in decision making. Math Sci 13(3):213–229. https://doi.org/10.1007/s40096-019-0291-7

    Article  MathSciNet  Google Scholar 

  • Khan M, Rasheed A, Anwar MS, Shah STH (2023b) Application of fractional derivatives in a Darcy medium natural convection flow of MHD nanofluid. Ain Shams Eng J 14(9):102093

    Article  Google Scholar 

  • Khan MR, Ullah K, Khan Q (2023) Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment. Rep Mech Eng 4(1), Art. no. 1, https://doi.org/10.31181/rme20031012023k.

  • Kumar S, Kumar R, Pandey A (2021) Chapter 1 - Solid waste and wastewater management: a social and global perspective, In: Current Developments in Biotechnology and Bioengineering, S. Kumar, R. Kumar, and A. Pandey, Eds., Elsevier, pp 1–22. https://doi.org/10.1016/B978-0-12-821009-3.00004-X.

  • Li D-F (2010) TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 18(2):299–311. https://doi.org/10.1109/TFUZZ.2010.2041009

    Article  Google Scholar 

  • Liu P (2017) Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators. Comput Ind Eng 108:199–212

    Article  Google Scholar 

  • Liu P, Munir M, Mahmood T, Ullah K (2019) Some similarity measures for interval-valued picture fuzzy sets and their applications in decision making. Information, 10(12), Art. no. 12, https://doi.org/10.3390/info10120369.

  • Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053. https://doi.org/10.1007/s00521-018-3521-2

    Article  Google Scholar 

  • Mahmood T, Ali Z (2020) The fuzzy cross-entropy for picture hesitant fuzzy sets and their application in multi criteria decision making. Punjab Univ J Math 52(10)

  • Mahmood T, ur Rehman U (2022) Multi-attribute decision-making method based on bipolar complex fuzzy Maclaurin symmetric mean operators. Comput Appl Math 41(7): 331

  • Mahmood T, Ur Rehman U (2022) A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures. Int J Intell Syst 37(1): 535–567

  • Mahmood T, ur Rehman U (2023) Bipolar complex fuzzy subalgebras and ideals of BCK/BCI-algebras. J Decision Anal Intell Computi 3(1):47–61. https://doi.org/10.31181/jdaic10021042023m.

  • Myers N, Kent J (2003) New consumers: the influence of affluence on the environment. Proc Natl Acad Sci 100(8):4963–4968. https://doi.org/10.1073/pnas.0438061100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Narang M, Kumar A, Dhawan R (2023) A fuzzy extension of MEREC method using parabolic measure and its applications. J Decision Anal Intelligent Comput 3(1): 33–46. https://doi.org/10.31181/jdaic10020042023n.

  • Naseem A, Akram M, Ullah K, Ali Z (2023) Aczel-Alsina aggregation operators based on complex single-valued neutrosophic information and their application in decision-making problems. Decision Making Advances 1(1):86–114. https://doi.org/10.31181/dma11202312.

  • Puneeth V, Sarpabhushana M, Anwar MS, Aly EH, Gireesha BJ (2022) Impact of bioconvection on the free stream flow of a pseudoplastic nanofluid past a rotating cone. Heat Transf 51(5):4544–4561

    Article  Google Scholar 

  • Rao CN, Sujatha M (2023) A consensus-based Fermatean fuzzy WASPAS methodology for selection of healthcare waste treatment technology selection. Decision Making 6(2): 600–619. https://doi.org/10.31181/dmame622023621.

  • Rao CN, Sujatha M (2023b) A consensus-based Fermatean fuzzy WASPAS methodology for selection of healthcare waste treatment technology selection. Decis Mak Appl Manag Eng 6(2):600–619

    Article  Google Scholar 

  • Rathje WL, Murphy C (2001) Rubbish!: the archaeology of garbage. University of Arizona Press

  • Riaz M, Athar Farid HM (2022) Picture fuzzy aggregation approach with application to third-party logistic provider selection process. Reports Mech Eng 3(1): 227–236. https://doi.org/10.31181/rme20023062022r.

  • Riaz M, Athar Farid HM, Pamucar D, Tanveer S (2022) Spherical Fuzzy Information Aggregation Based on Aczel–Alsina Operations and Data Analysis for Supply Chain. Math Probl Eng vol 2022

  • Riaz M, Hashmi MR (2019) Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems J. Intell Fuzzy Syst 37(4):5417–5439

    Article  Google Scholar 

  • Sahoo SK, Goswami SS (2023) A Comprehensive review of multiple criteria decision-making (MCDM) methods: advancements, applications, and future directions. Decis Mak Adv 1(1), Art. no. 1, https://doi.org/10.31181/dma1120237.

  • Seikh MR, Mandal U (2021) Some picture fuzzy aggregation operators based on frank t-norm and t-conorm: application to MADM Process, Informatica, 45(3)

  • Senapati T (2022) Approaches to multi-attribute decision-making based on picture fuzzy Aczel-Alsina average aggregation operators. Comput Appl Math 41(1):1–19

    Article  MathSciNet  Google Scholar 

  • Senapati T, Martínez L, Chen G (2022) Selection of appropriate global partner for companies using q-rung orthopair fuzzy aczel-alsina average aggregation operators. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-022-01417-6

    Article  Google Scholar 

  • G. Tchobanoglous and F. Kreith, Handbook of solid waste management. McGraw-Hill Education, 2002.

  • Ullah K (2021) Picture fuzzy maclaurin symmetric mean operators and their applications in solving multiattribute decision-making problems. Math Probl Eng vol. 2021

  • Ullah K, Naeem M, Hussain A, Waqas M Haleemzai I (2023) Evaluation of electric motor cars based frank power aggregation operators under picture fuzzy information and a multi-attribute group decision-making process. IEEE Access

  • Vergara SE, Tchobanoglous G Municipal Solid Waste and the Environment: A Global Perspective. Rochester, NY, Nov. 01, 2012. https://doi.org/10.1146/annurev-environ-050511-122532.

  • Wang R (2019) Research on the application of the financial investment risk appraisal models with some interval number muirhead mean operators. J Intell Fuzzy Syst 37(2):1741–1752

    Article  Google Scholar 

  • Wang H (2021) T-spherical fuzzy rough interactive power heronian mean aggregation operators for multiple attribute group decision-making. Symmetry 13(12):2422

    Article  ADS  Google Scholar 

  • Wei G (2018) Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fundam Informaticae 157(3):271–320

    Article  MathSciNet  Google Scholar 

  • Wu L, Wei G, Wu J, Wei C (2020) Some interval-valued intuitionistic fuzzy dombi heronian mean operators and their application for evaluating the ecological value of forest ecological tourism demonstration areas. Int J Environ Res Public Health 17(3), Art. no. 3, https://doi.org/10.3390/ijerph17030829.

  • Xu Z (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15(6):1179–1187

    Article  Google Scholar 

  • Xu Z, Chen J (2007) On geometric aggregation over interval-valued intuitionistic fuzzy information. In: Fourth international conference on fuzzy systems and knowledge discovery (FSKD 2007), IEEE, pp 466–471

  • Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.

  • Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst 25(5):1222–1230

    Article  Google Scholar 

  • Yildirim BF, Yıldırım SK (2022) Evaluating the satisfaction level of citizens in municipality services by using picture fuzzy VIKOR method: 2014–2019 period analysis. Decis Mak Appl Manag Eng 5(1):50–66

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoya Zhu or Dragan Pamucar.

Ethics declarations

Conflict of interest

To the author’s knowledge, no conflict of interest, financial or other, exists. All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the SOCO.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A

Prove of theorem 1: Since a set of PFVs \({\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}=\left({{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}, {\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}, {{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}\right), \left({\acute{\ddot{\sf I}}}=1, 2, \dots ,\Psi \right)\) with \(\beth , \gimel >0\) positive real numbers. To prove the above theorem, we have to use the induction method so we can:

$${\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}s}_{{\acute{\ddot{\sf I}}}}^{\beth }=\left(\begin{array}{c}\frac{1}{1+{\left(\beth {\left(\frac{1-{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}{{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}},1-\frac{1}{1+{\left(\beth {\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}},\\ 1-\frac{1}{1+{\left(\beth {\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}}\end{array}\right)$$
$${\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{\daleth }^{\gimel }=\left(\begin{array}{c}\frac{1}{1+{\left(\gimel {\left(\frac{1-{{\mathcalligra{u}}}_{\daleth }}{{{\mathcalligra{u}}}_{\daleth }}\right)}^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}},1-\frac{1}{1+{\left(\gimel {\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)}^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}},\\ 1-\frac{1}{1+{\left(\gimel {\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)}^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}}\end{array}\right)$$

Let \(\left(\frac{1-{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}{{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}\right)={A}_{{\acute{\ddot{\sf I}}}}\) and \(\left(\frac{1-{{\mathcalligra{u}}}_{\daleth }}{{{\mathcalligra{u}}}_{\daleth }}\right)={A}_{\daleth }\)

\(\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)={B}_{{\acute{\ddot{\sf I}}}}\) and \(\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)={B}_{\daleth }\)

\(\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)={C}_{{\acute{\ddot{\sf I}}}}\) and \(\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)={C}_{\daleth }\)

$${\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\beth }=\left(\begin{array}{c}\frac{1}{1+{\beth }^{\frac{1}{\text{\ss}}}{A}_{{\acute{\ddot{\sf I}}}}},1-\frac{1}{1+{\beth }^{\frac{1}{\text{\ss}}}{B}_{{\acute{\ddot{\sf I}}}}},\\ 1-\frac{1}{1+{\beth }^{\frac{1}{\text{\ss}}}{C}_{{\acute{\ddot{\sf I}}}}}\end{array}\right)$$
$${\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{\daleth }^{\gimel }= \left(\begin{array}{c}\frac{1}{1+{\gimel }^{\frac{1}{\text{\ss}}}{A}_{\daleth }}, 1-\frac{1}{1+{\gimel }^{\frac{1}{\text{\ss}}}{B}_{\daleth }},\\ 1-\frac{1}{1+{\gimel }^{\frac{1}{\text{\ss}}}{C}_{\daleth }}\end{array}\right)$$
$${\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\beth }\otimes{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\gimel }=\left(\begin{array}{c}\frac{1}{1+{\left(\beth {A}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {A}_{\daleth }^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}}, 1-\frac{1}{1+{\left(\beth {B}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {B}_{\daleth }^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}}\\ ,\\ 1-\frac{1}{1+{\left(\beth {C}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {C}_{\daleth }^{\text{\ss}}\right)}^{\frac{1}{\text{\ss}}}}\end{array}\right)$$
$$\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\beth }\otimes{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{\daleth }^{\gimel }=\left(\begin{array}{c}1-\frac{1}{1+{\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {A}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {A}_{\daleth }^{\text{\ss}}\right)}\right)\right)}^{\frac{1}{\text{\ss}}}}, \frac{1}{1+{\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {B}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {B}_{\daleth }^{\text{\ss}}\right)}\right)\right)}^{\frac{1}{\text{\ss}}}},\\ \frac{1}{1+{\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {C}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {C}_{\daleth }^{\text{\ss}}\right)}\right)\right)}^{\frac{1}{\text{\ss}}}}\end{array}\right)$$
$$\frac{1}{\Psi \left(\Psi -1\right)}\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\beth }\otimes{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{\daleth }^{\gimel }=\left(\begin{array}{c}1-1/\left(1+{\left(1/\left(\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {A}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {A}_{\daleth }^{\text{\ss}}\right)}\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right),\\ 1/\left(1+{\left(\frac{1}{\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {B}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {B}_{\daleth }^{\text{\ss}}\right)}\right)\right)}\right)}^{\frac{1}{\text{\ss}}}\right), \\ 1/\left(1+{\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {C}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {C}_{\daleth }^{\text{\ss}}\right)}\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\end{array}\right)$$
$${\left(\frac{1}{\Psi \left(\Psi -1\right)}\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\beth }\otimes{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{\daleth }^{\gimel }\right)}^{\frac{1}{\beth +\gimel }}=\left(\begin{array}{c}1/1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {A}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {A}_{\daleth }^{\text{\ss}}\right)}\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}},\\ 1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {B}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {B}_{\daleth }^{\text{\ss}}\right)}\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right) ,\\ 1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(\frac{1}{\left(\beth {C}_{{\acute{\ddot{\sf I}}}}^{\text{\ss}}+\gimel {C}_{\daleth }^{\text{\ss}}\right)}\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\end{array}\right)$$

Let \(\left(\frac{1-{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}{{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}\right)={A}_{{\acute{\ddot{\sf I}}}}\) and \(\left(\frac{1-{{\mathcalligra{u}}}_{\daleth }}{{{\mathcalligra{u}}}_{\daleth }}\right)={A}_{\daleth }\)

\(\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)={B}_{{\acute{\ddot{\sf I}}}}\) and \(\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)={B}_{\daleth }\)

\(\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)={C}_{{\acute{\ddot{\sf I}}}}\) and \(\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)={C}_{\daleth }\)

Therefore, we have:

$${\left(\frac{1}{\Psi \left(\Psi -1\right)}\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}^{\beth }\otimes{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{\daleth }^{\gimel }\right)}^{\frac{1}{\beth +\gimel }}=\left(\begin{array}{c}1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}{{{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{{\mathcalligra{u}}}_{\daleth }}{{{\mathcalligra{u}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right),\\ 1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right) ,\\ 1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\end{array}\right)$$

Appendix B

Prove of property 1: Since \({\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}=\left({\alpha }_{{\acute{\ddot{\sf I}}}}, {\beta }_{{\acute{\ddot{\sf I}}}}, {\gamma }_{{\acute{\ddot{\sf I}}}}\right)\left({\acute{\ddot{\sf I}}}=1, 2, \dots ,\Psi \right)\) and \({\theta }_{{\acute{\ddot{\sf I}}}}=\left({\Xi }_{{\acute{\ddot{\sf I}}}}, {\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}, {{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}\right)\) are two collections of PFVs, if \({\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{{\acute{\ddot{\sf I}}}}\le {\theta }_{{\acute{\ddot{\sf I}}}}\) such that \({\alpha }_{{\acute{\ddot{\sf I}}}}\le {{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}, {\beta }_{{\acute{\ddot{\sf I}}}}\ge {\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}, {\gamma }_{{\acute{\ddot{\sf I}}}}\ge {{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}\) for all \({\acute{\ddot{\sf I}}}=\mathrm{1,2},\dots , \Psi \).

Firstly, we have to prove \(\theta \le \mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}\) For this \({\alpha }_{{\acute{\ddot{\sf I}}}}\le {\Xi }_{{\acute{\ddot{\sf I}}}}\) and \({\alpha }_{\daleth }\le {\Xi }_{\daleth }\), then we have:

\(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}} \ge \frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}},\) and \(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }} \ge \frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\).

$$\Rightarrow\left({\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+{\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\ge \left({\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+{\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)$$
$$\Rightarrow\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\ge \left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)$$
$$\Rightarrow\left(1/\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\le \left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)$$
$$\Rightarrow{\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)}^{\frac{1}{\text{\ss}}}\le {\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)}^{\frac{1}{\text{\ss}}}$$
$$\Rightarrow{\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\le {\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}$$
$$\Rightarrow\frac{1}{{\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}}\ge $$
$$\frac{1}{{\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}}$$
$$\Rightarrow1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\ge $$
$$1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}$$
$$\Rightarrow1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\alpha }_{{\acute{\ddot{\sf I}}}}}{{\alpha }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\alpha }_{\daleth }}{{\alpha }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\le $$
$$1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)$$

Similarly, we can prove \({\beta }_{{\acute{\ddot{\sf I}}}}\ge {\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}\) We have:

$$1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{\beta }_{{\acute{\ddot{\sf I}}}}}{1-{\beta }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{\beta }_{\daleth }}{1-{\beta }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\ge $$
$$1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)$$

And \({\gamma }_{{\acute{\ddot{\sf I}}}}\ge {{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}\) we have:

$$1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{\gamma }_{{\acute{\ddot{\sf I}}}}}{1-{\gamma }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{\gamma }_{\daleth }}{1-{\gamma }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\ge $$
$$1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)$$

So, we have:

$$PFDB{M}^{\beth .\gimel }\left({\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{1}, {\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{2},\dots , {\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{n}\right)\le PFDB{M}^{\beth .\gimel }\left({\theta }_{1},{\theta }_{2},\dots , {\theta }_{\Psi }\right)$$

Appendix C

Prove of property 2: Since \({\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}_{{\acute{\ddot{\sf I}}}}=\left({{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}, {\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}, {{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}\right)\left({\acute{\ddot{\sf I}}}=1, 2, \dots ,\Psi \right)\) be a collection of the same PFVs that is \({{\mathcalligra{u}}}_{{\acute{\ddot{\sf I}}}}={\mathcalligra{u}}\). So, we have:

$$PFDB{M}^{\beth .\gimel }\left({\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{1}, {\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{2},\dots , {\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{n}\right)=\left(\begin{array}{c}1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right),\\ 1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right) ,\\ 1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)\end{array}\right)$$
$${\mathcalligra{u}}=1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\Psi \left(\Psi -1\right) \left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\Xi }_{{\acute{\ddot{\sf I}}}}}{{\Xi }_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\Xi }_{\daleth }}{{\Xi }_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}$$
$$=1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\Psi \left(\Psi -1\right) \left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{1-{\mathcalligra{u}}}{{\mathcalligra{u}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{1-{\mathcalligra{u}}}{{\mathcalligra{u}}}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}$$
$$=1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\Psi \left(\Psi -1\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/{\left(\frac{1-{\mathcalligra{u}}}{{\mathcalligra{u}}}\right)}^{\text{\ss}}\left(\beth +\gimel \right) \right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}$$
$$=\sqrt{\frac{1}{\left(1+\left(\frac{1-{\mathcalligra{u}}}{{\mathcalligra{u}}}\right)\right)}}={\mathcalligra{u}}$$

Similarly, we can show:

$$\Rightarrow1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}{1-{\bar{\ddot{\sf a}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{\bar{\ddot{\sf a}}}_{\daleth }}{1-{\bar{\ddot{\sf a}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)=\acute{\ddot{\sf a}}$$
$$\Rightarrow1-1/\left(1+{\left(1/\left(\beth +\gimel \right)\left(1/\left(1/\left(\Psi \left(\Psi -1\right)\right)\left(\sum_{\underset{{\acute{\ddot{\sf I}}}\ne \daleth }{{\acute{\ddot{\sf I}}}, \daleth =1}}^{\Psi }\left(1/\left(\beth {\left(\frac{{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}{1-{{\mathcal{V}}}_{{\acute{\ddot{\sf I}}}}}\right)}^{\text{\ss}}+\gimel {\left(\frac{{{\mathcal{V}}}_{\daleth }}{1-{{\mathcal{V}}}_{\daleth }}\right)}^{\text{\ss}}\right)\right)\right)\right)\right)\right)}^{\frac{1}{\text{\ss}}}\right)={\mathcal{V}}$$

So, we have proved.

$$PFDB{M}^{\beth .\gimel }\left({\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{1}, {\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{2},\dots , {\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}}_{n}\right)=\mathrm{\raisebox{4pt}{$-$}\hspace*{-12pt}{\sf Y}}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Zhu, X., Ullah, K. et al. Recycling of waste materials based on decision support system using picture fuzzy Dombi Bonferroni means. Soft Comput 28, 2771–2797 (2024). https://doi.org/10.1007/s00500-023-09328-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09328-w

Keywords

Navigation