Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Evidential reasoning rule for environmental governance cost prediction with considering causal relationship and data reliability

  • Soft computing in decision-making and in modeling in economics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Environmental governance cost prediction can avoid blind investment and waste of resources and achieve effective cost planning for sustainable development of resources and environment. For the sake of solving the problem that most previous studies failed to consider the causal relationship and data reliability of environmental governance inputs and outputs, a new environmental governance cost prediction method is proposed under the framework of the evidential reasoning (ER) rule with three improvements comparing to existing methods: (1) the causal relationship of environmental governance inputs and outputs is embedded into evidence representation for better extracting knowledge from data; (2) the efficiency about the minimum inputs to achieve the maximum outputs is used to evaluate the data reliability of environmental governance inputs and outputs; and (3) a new analytical ER rule is investigated to optimize the process of evidence combination. Hence, the new method includes the calculation of belief distributions, evidence reliabilities, and evidence weights, as well as the combination of evidences to predict environmental governance costs. In the case study, the data of 30 provinces in Mainland China from 2005 to 2020 are collected to verify the effectiveness of the new method. Results show a high level of accuracy of the new method over other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Almaghrabi F, Xu DL, Yang JB (2021) An Evidential reasoning rule based feature selection for improving trauma outcome prediction. Appl Soft Comput 103:107112

    Article  Google Scholar 

  • Cao HJ, Zhang L, Qi Y, Yang ZM, Li XY (2022) Government auditing and environmental governance: Evidence from China’s auditing system reform. Environ Impact Assess Rev 93:106705

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 4:429–444

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Wang YM, Lai FJ, Feng F (2017) An investment analysis for China’s sustainable development based on inverse data envelopment analysis. J Clean Prod 142:1638–1649

    Article  Google Scholar 

  • Dmuchowski P, Dmuchowski W, Baszewska-Dabrowska AH (2023) Environmental, social, and governance (ESG) model; impacts and sustainable investment – Global trends and Poland’s perspective. J Environ Manage 329:117023

    Article  Google Scholar 

  • Doyle J, Green R (1994) Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. J Op Res Soc 5:567–578

    Article  MATH  Google Scholar 

  • Du YW, Wang YM, Qin M (2018) New evidential reasoning rule with both weight and reliability for evidence combination. Comput Ind Eng 124:493–508

    Article  Google Scholar 

  • Fan Y, Wu S, Lu YT, Zhao YH (2019) Study on the effect of the environmental protection industry and investment for the national economy: an input-output perspective. J Clean Prod 227:1093–1106

    Article  Google Scholar 

  • Fan W, Yan L, Chen BY, Ding WW, Wang P (2022) Environmental governance effects of local environmental protection expenditure in China. Resour Policy 77:102760

    Article  Google Scholar 

  • Gao Q, Xu DL (2019) An empirical study on the application of the evidential reasoning rule to decision making in financial investment. Knowl-Based Syst 164:226–234

    Article  Google Scholar 

  • Giacomo DF, Massimo B (2020) The impact of a gain-sharing cost-reflective tariff on waste management cost under incentive regulation: The Italian case. J Environ Manag 265:110–130

    Google Scholar 

  • Karásek J, Pavlica J (2016) Green investment scheme: experience and results in the Czech Republic. Energy Policy 90:121–130

    Article  Google Scholar 

  • Kong GL, Xu DL, Yang JB, Wang TB, Jiang BG (2021) Evidential reasoning rule-based decision support system for predicting ICU admission and in-hospital death of Trauma. IEEE Trans Syst Man Cybern Syst 51(11):7131–7142

    Article  Google Scholar 

  • Li X, Li YP (2020) A multi-scenario ensemble simulation and environmental input-output model for identifying optimal pollutant- and CO2- emission mitigation scheme of Guangdong province. J Clean Prod 262:121–143

    Article  Google Scholar 

  • Li L, Lei YL, Wu SM, Huang ZY, Luo JY, Wang YF, Chen JB, Dan Y (2018) Evaluation of future energy consumption on PM25 emissions and public health economic loss in Beijing. J Clean Prod 187:1115–1128

    Article  Google Scholar 

  • Liu F, Chen YW, Yang JB, Xu DL, Liu W (2019) Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule. Int J Project Manag 37(1):87–97

    Article  Google Scholar 

  • Lorrae VK, Helen B (2016) Serving the public good: Empirical links between governance and research investment in the context of global environmental change. Ecol Econ 125:101–107

    Article  Google Scholar 

  • Mosbeh RK, Abidhan B, Navid K, Pijush S, Jong WH, Ahmed R (2021) Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. Renew Sustain Energy Rev 148:111315

    Article  Google Scholar 

  • Seiford LM, Zhu J (2002) Modeling undesirable factors in efficiency evaluation. Eur J Oper Res 142:16–20

    Article  MATH  Google Scholar 

  • Tang SW, Zhou ZJ, Hu CH, Yang JB, Cao Y (2019) Perturbation analysis of evidential reasoning rule. IEEE Trans Syst Man Cybern Syst 51(8):4895–4910

    Article  Google Scholar 

  • Tian ZZ, Fang DL, Chen B (2020) Three-scale input-output analysis for energy and water consumption in urban agglomeration. J Clean Prod 268:122148

    Article  Google Scholar 

  • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441

    Article  Google Scholar 

  • Wang WH, Wang X (2023) Does provincial green governance promote enterprise green investment? Based on the perspective of government vertical management. J Clean Prod 396:136519

    Article  Google Scholar 

  • Wang YM, Yang JB, Xu DL (2006) Environmental impact assessment using the evidential reasoning approach. Eur J Oper Res 174(3):1885–1913

    Article  MATH  Google Scholar 

  • Wang YM, Ye FF, Yang LH (2020) Extended belief rule based system with joint learning for environmental governance cost prediction. Ecol Ind 111:106070

    Article  Google Scholar 

  • Wang J, Zhou ZJ, Hu CH, Tang SW, Cao Y (2022a) A new evidential reasoning rule with continuous probability distribution of reliability. IEEE Trans Cybern 52(8):8088–8100

    Article  Google Scholar 

  • Wang J, Zhou ZJ, Hu CH, Tang SW, He W, Long TY (2022b) A fusion approach based on evidential reasoning rule considering the reliability of digital quantities. Inf Sci 612:107–131

    Article  Google Scholar 

  • Xu N, Dang YG, Gong YD (2017a) Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China. Energy 118:473–480

    Article  Google Scholar 

  • Xu Q, Lei Y, Ge J, Ma X (2017b) Did investment become green in China? Evidence from a sectoral panel analysis from 2003 to 2012. J Clean Prod 156:500–506

    Article  Google Scholar 

  • Yang JB, Xu DL (2013) Evidential reasoning rule for evidence combination. Artif Intell 205:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Yang JB, Liu J, Wang J, Sii HS, Wang HW (2006) Belief rule-base inference methodology using the evidential reasoning approach – RIMER. IEEE Trans Syst Man Cybern Part A Syst Humans 36(2):266–285

    Article  Google Scholar 

  • Yang LH, Wang SH, Ye FF, Liu J, Wang YM, Hu HB (2021) Environmental investment prediction using extended belief rule-based system and evidential reasoning rule. J Clean Prod 289:125661

    Article  Google Scholar 

  • Ye FF, Yang LH, Wang YM (2019) A new environmental governance cost prediction method based on indicator synthesis and different risk coefficients. J Clean Prod 212:548–566

    Article  Google Scholar 

  • Ye FF, Yang LH, Wang YM (2020a) A cost forecast method of environmental governance based on input-output relationship and efficiency. Control Decis 35(4):993–1003

    Google Scholar 

  • Ye FF, Yang LH, Wang YM (2020b) Extended belief rule-based model for environmental investment prediction with indicator ensemble selection. Int J Approx Reason 126:290–307

    Article  Google Scholar 

  • Ye FF, Yang LH, Lu HT, Wang YM (2022) A novel data-driven decision model based on extended belief rule base to predict China’s carbon emissions. J Environ Manag 318:115547

    Article  Google Scholar 

  • Zaghum U, Dimitris K, Sypros P (2020) The static and dynamic connectedness of environmental, social, and governance investments: International evidence. Econ Model 93:112–124

    Article  Google Scholar 

  • Zhou M, Liu XB, Chen YW, Yang JB (2018) Evidential reasoning rule for MADM with both weights and reliabilities in group decision making. Knowl-Based Syst 143:142–161

    Article  Google Scholar 

  • Zhou YJ, Zhou M, Liu XB, Cheng BY, Herrera-Viedma E (2022) Consensus reaching mechanism with parallel dynamic feedback strategy for large-scale group decision making under social network analysis. Comput Ind Eng 174:108818

    Article  Google Scholar 

  • Zhou M, Zheng YQ, Chen YW, Cheng BY, Herrera-Viedma E, Wu J (2023) A large-scale group consensus reaching approach considering self-confidence with two-tuple linguistic trust/distrust relationship and its application in life cycle sustainability assessment. Inform Fus 94:181–199

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 72001043), the Natural Science Foundation of Fujian Province, China (Nos. 2022J01178 and 2020J05122), and the Humanities and Social Science Foundation of the Ministry of Education, China (No. 20YJC630188). Prof. Lu gratefully acknowledges the funding support from Hong Kong SustainTech Foundation and PolyU Project of Strategic Importance P0039723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Hao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Derivation of the analytical aggregation formulas of the ER rule

In order to provide the analytical aggregation formulas of the ER rule, the formulas derivation inspired by the analytical ER algorithm (Wang et al. 2006) is provided when only single propositions \(\theta\) and global ignorance \({{\varvec{\Theta}}}\) are assumed to be focal elements. First of all, the aggregation formulas of two evidences are discussed according to Eqs. (7) and (8) shown in Sect. 3 as follows:

  1. (1)

    For the power set \(P({{\varvec{\Theta}}})\), because of \(\tilde{m}_{{P({{\varvec{\Theta}}}),i}} = 1 - \tilde{w}_{i}\), Eq. (8) can be simplified as follows:

    $$\hat{m}_{{P({{\varvec{\Theta}}}),e(2)}} = (1 - \tilde{w}_{2} )(1 - \tilde{w}_{1} ) = \tilde{m}_{{P({{\varvec{\Theta}}}),2}} \tilde{m}_{{P({{\varvec{\Theta}}}),1}} = \prod\limits_{i = 1}^{2} {\tilde{m}_{{P({{\varvec{\Theta}}}),i}} }$$
    (A1)
  2. (2)

    For the global ignorance \({{\varvec{\Theta}}}\), Eq. (7) can be simplified as follows:

    $$ \begin{aligned} \hat{m}_{{{{\varvec{\Theta}}},e(2)}} & = [(1 - \tilde{w}_{2} )\tilde{m}_{{{{\varvec{\Theta}}},1}} + (1 - \tilde{w}_{1} )\tilde{m}_{{{{\varvec{\Theta}}},2}} ] + \sum\limits_{{B \cap C = {{\varvec{\Theta}}}}} {\tilde{m}_{B,1} \tilde{m}_{C,2} } \hfill \\& = (1 - \tilde{w}_{2} )\tilde{m}_{{{{\varvec{\Theta}}},1}} + (1 - \tilde{w}_{1} )\tilde{m}_{{{{\varvec{\Theta}}},2}} + \tilde{m}_{{{{\varvec{\Theta}}},1}} \tilde{m}_{{{{\varvec{\Theta}}},2}} \hfill \\& = (1 - \tilde{w}_{2} )\tilde{m}_{{{{\varvec{\Theta}}},1}} + (1 - \tilde{w}_{1} )\tilde{m}_{{{{\varvec{\Theta}}},2}} + \tilde{m}_{{{{\varvec{\Theta}}},1}} \tilde{m}_{{{{\varvec{\Theta}}},2}} \hfill \\ \end{aligned} $$
    (A2)

Because of \(\tilde{m}_{{P({{\varvec{\Theta}}}),i}} = 1 - \tilde{w}_{i}\), Eq. (A2) can be further simplified as follows:

$$ \begin{aligned} \hat{m}_{{{{\varvec{\Theta}}},e(2)}} &= \tilde{m}_{{P({{\varvec{\Theta}}}),2}} \tilde{m}_{{{{\varvec{\Theta}}},1}} + \tilde{m}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{{{{\varvec{\Theta}}},2}} + \tilde{m}_{{{{\varvec{\Theta}}},1}} \tilde{m}_{{{{\varvec{\Theta}}},2}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{{{{\varvec{\Theta}}},2}} )\tilde{m}_{{{{\varvec{\Theta}}},1}} + \tilde{m}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{{{{\varvec{\Theta}}},2}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{{{{\varvec{\Theta}}},2}} )\tilde{m}_{{{{\varvec{\Theta}}},1}} + (\tilde{m}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{{{{\varvec{\Theta}}},2}} )\tilde{m}_{{P({{\varvec{\Theta}}}),1}} - \tilde{m}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{{P({{\varvec{\Theta}}}),2}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{{{{\varvec{\Theta}}},2}} )(\tilde{m}_{{P({{\varvec{\Theta}}}),1}} + \tilde{m}_{{{{\varvec{\Theta}}},1}} ) - \tilde{m}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{{P({{\varvec{\Theta}}}),2}} \hfill \\& = \prod\limits_{i = 1}^{2} {(\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )} - \prod\limits_{i = 1}^{2} {\tilde{m}_{{P({{\varvec{\Theta}}}),i}} } \hfill \\ \end{aligned} $$
(A3)
  1. (3)

    For the single proposition θ (\(\theta \in {{\varvec{\Theta}}}\)), Eq. (8) can be simplified as follows:

    $$ \begin{aligned} \hat{m}_{\theta ,e(2)} &= [(1 - \tilde{w}_{2} )\tilde{m}_{\theta ,1} + (1 - \tilde{w}_{1} )\tilde{m}_{\theta ,2} ] + \sum\limits_{B \cap C = \theta } {\tilde{m}_{B,1} \tilde{m}_{C,2} } \hfill \\& = (1 - \tilde{w}_{2} )\tilde{m}_{\theta ,1} + (1 - \tilde{w}_{1} )\tilde{m}_{\theta ,2} + \tilde{m}_{\theta ,1} \tilde{m}_{\theta ,2} + \tilde{m}_{{{{\varvec{\Theta}}},1}} \tilde{m}_{\theta ,2} + \tilde{m}_{\theta ,1} \tilde{m}_{{{{\varvec{\Theta}}},2}} \hfill \\& = (1 - \tilde{w}_{2} + \tilde{m}_{{{{\varvec{\Theta}}},2}} )\tilde{m}_{\theta ,1} + (1 - \tilde{w}_{1} + \tilde{m}_{{{{\varvec{\Theta}}},1}} )\tilde{m}_{\theta ,2} + \tilde{m}_{\theta ,1} \tilde{m}_{\theta ,2} \hfill \\ \end{aligned} $$
    (A4)

When assume \(\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),i}} = 1 - \tilde{w}_{i} + \tilde{m}_{{{{\varvec{\Theta}}},i}}\), Eq. (A4) can be further simplified as follows:

$$ \begin{aligned} \hat{m}_{\theta ,e(2)} &= \tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),2}} \tilde{m}_{\theta ,1} + \tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{\theta ,2} + \tilde{m}_{\theta ,1} \tilde{m}_{\theta ,2} \hfill \\& = (\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{\theta ,2} )\tilde{m}_{\theta ,1} + \tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{\theta ,2} \hfill \\& = (\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{\theta ,2} )\tilde{m}_{\theta ,1} + (\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{\theta ,2} )\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),1}} - \tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),2}} \hfill \\& = (\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),2}} + \tilde{m}_{\theta ,2} )(\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),1}} + \tilde{m}_{\theta ,1} ) - \tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),1}} \tilde{m}_{{P({{\varvec{\Theta}}}),2}} \hfill \\& = \prod\limits_{i = 1}^{2} {(\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{\theta ,i} )} - \prod\limits_{i = 1}^{2} {\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),i}} } \hfill \\ \end{aligned} $$
(A5)

Because of \(\tilde{m}^{\prime}_{{P({{\varvec{\Theta}}}),i}} = 1 - \tilde{w}_{i} + \tilde{m}_{{{{\varvec{\Theta}}},i}} = \tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}}\), Eq. (A5) can be written as below:

$$ \hat{m}_{\theta ,e(2)} = \prod\limits_{i = 1}^{2} {(\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} + \tilde{m}_{\theta ,i} )} - \prod\limits_{i = 1}^{2} {(\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )} $$
(A6)

Based on the above formulas deviations, the following three equations are assumed to be true for aggregate the first i-1 evidences:

$$ \hat{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} = \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } $$
(A7)
$$ \widehat{m}_{{{{\varvec{\Theta}}},e(i - 1)}} = \prod\limits_{l = 1}^{i - 1} {\left( {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} } \right)} - \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } $$
(A8)
$$ \hat{m}_{\theta ,e(i - 1)} = \prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} + \tilde{m}_{\theta ,l} )} - \prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} $$
(A9)

Owing to two facts: (1) the normalization is the bridge to associate \(\hat{m}_{\theta ,e(i - 1)}\), \(\hat{m}_{{{{\varvec{\Theta}}},e(i - 1)}}\), and \(\hat{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}}\) to \(\tilde{m}_{\theta ,e(i - 1)}\), \(\tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}}\), and \(\tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}}\)(Yang and Xu 2013); (2) the normalization in the evidence aggregation rule of the D–S theory of evidence can be applied at the end of the evidence aggregation process without changing the aggregation result (Yen, 1990), \(\hat{m}_{\theta ,e(i - 1)}\), \(\hat{m}_{{{{\varvec{\Theta}}},e(i - 1)}}\), and \(\hat{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}}\) shown in Eqs. (A7)–(A9) are used as \(\tilde{m}_{\theta ,e(i - 1)}\), \(\tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}}\), and \(\tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}}\) to aggregate the ith evidence according to Eqs. (10)–(11).

  1. (1)

    For the power set \(P({{\varvec{\Theta}}})\), a new aggregation formula can be obtained from Eq. (11) below:

    $$\hat{m}_{{P({{\varvec{\Theta}}}),e(i)}} = (1 - \tilde{w}_{i} )\tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} = \tilde{m}_{{P({{\varvec{\Theta}}}),i}} \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } = \prod\limits_{l = 1}^{i} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} }$$
    (A10)
  2. (2)

    For the global ignorance \({{\varvec{\Theta}}}\), a new aggregation formula can be obtained from Eq. (10) below:

    $$ \begin{aligned} \hat{m}_{{{{\varvec{\Theta}}},e(i)}}& = [(1 - \tilde{w}_{i} )\tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}} + \tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} \tilde{m}_{{{{\varvec{\Theta}}},i}} ] + \sum\limits_{{B \cap C = {{\varvec{\Theta}}}}} {\tilde{m}_{B,e(i - 1)} \tilde{m}_{C,i} } \hfill \\&= (1 - \tilde{w}_{i} )\tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}} + \tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} \tilde{m}_{{{{\varvec{\Theta}}},i}} + \tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}} \tilde{m}_{{{{\varvec{\Theta}}},i}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} \tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\left[\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } \right] + \tilde{m}_{{{{\varvec{\Theta}}},i}} \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - (\tilde{m}_{{P({{\varvec{\Theta}}}),i}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } + \tilde{m}_{{{{\varvec{\Theta}}},i}} \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } \hfill \\& = \prod\limits_{l = 1}^{i} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - \prod\limits_{l = 1}^{i} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } \hfill \\ \end{aligned} $$
    (A11)
  3. (3)

    For the single proposition θ (\(\theta \in {{\varvec{\Theta}}}\)), a new aggregation formula can be obtained from Eq. (10) below:

    $$ \begin{aligned} \hat{m}_{\theta ,e(i)} &= [(1 - \tilde{w}_{i} )\tilde{m}_{\theta ,e(i - 1)} + \tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} \tilde{m}_{\theta ,i} ] + \sum\limits_{B \cap C = \theta } {\tilde{m}_{B,e(i - 1)} \tilde{m}_{C,i} } \hfill \\& = (1 - \tilde{w}_{i} )\tilde{m}_{\theta ,e(i - 1)} + \tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} \tilde{m}_{\theta ,i} + \tilde{m}_{\theta ,e(i - 1)} \tilde{m}_{\theta ,i} + \tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}} \tilde{m}_{\theta ,i} + \tilde{m}_{\theta ,e(i - 1)} \tilde{m}_{{{{\varvec{\Theta}}},i}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{\theta ,i} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\tilde{m}_{\theta ,e(i - 1)} + \tilde{m}_{\theta ,i} \tilde{m}_{{{{\varvec{\Theta}}},e(i - 1)}} + \tilde{m}_{\theta ,i} \tilde{m}_{{P({{\varvec{\Theta}}}),e(i - 1)}} \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{\theta ,i} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )[\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} + \tilde{m}_{\theta ,l} )} - \prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} ] \hfill \\& \quad + \tilde{m}_{\theta ,i} [\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } ] + \tilde{m}_{\theta ,i} \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } \hfill \\& = (\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{\theta ,i} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} + \tilde{m}_{\theta ,l} )} - (\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{\theta ,i} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} \hfill \\ & \quad + \tilde{m}_{\theta ,i} \prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - \tilde{m}_{\theta ,i} \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } + \tilde{m}_{\theta ,i} \prod\limits_{l = 1}^{i - 1} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } \hfill \\& = \prod\limits_{l = 1}^{i} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} + \tilde{m}_{\theta ,l} )} - (\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},i}} )\prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - \tilde{m}_{\theta ,i} \prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} \hfill \\& \quad + \tilde{m}_{\theta ,i} \prod\limits_{l = 1}^{i - 1} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} \hfill \\& = \prod\limits_{l = 1}^{i} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} + \tilde{m}_{\theta ,l} )} - \prod\limits_{l = 1}^{i} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} \hfill \\ \end{aligned} $$
    (A12)

Therefore, the equations shown in Eqs. (A7)–(A9) are true for the aggregation of the first i (i = 1,…, L) evidences. For i = L, the following non-normalized aggregation formula can be obtained below:

$$ \hat{m}_{{P({{\varvec{\Theta}}})}} = \prod\limits_{l = 1}^{L} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } $$
(A13)
$$ \hat{m}_{{{\varvec{\Theta}}}} = \prod\limits_{l = 1}^{L} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} - \prod\limits_{l = 1}^{L} {\tilde{m}_{{P({{\varvec{\Theta}}}),l}} } $$
(A14)
$$ \hat{m}_{\theta } = \prod\limits_{l = 1}^{L} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} + \tilde{m}_{\theta ,l} )} - \prod\limits_{l = 1}^{L} {(\tilde{m}_{{P({{\varvec{\Theta}}}),l}} + \tilde{m}_{{{{\varvec{\Theta}}},l}} )} $$
(A15)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, FF., Yang, LH., Uhomoibhi, J. et al. Evidential reasoning rule for environmental governance cost prediction with considering causal relationship and data reliability. Soft Comput 27, 12309–12327 (2023). https://doi.org/10.1007/s00500-023-08293-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08293-8

Keywords

Navigation