Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dynamics of pattern formation process in fractional-order super-diffusive processes: a computational approach

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper explores the suitability of space fractional-order reaction–diffusion scenarios to model some emergent pattern formation in predator–prey models. Such fractional reaction–diffusion equations are obtained on the basis of a continuous-time random walk approach with spatial memory and local kinetic reaction. The classical space second-order derivative is changed by the fractional Laplacian case. We employ the Fourier spectral method to numerically approximate the fractional Laplacian and advance in time with the novel ETDRK4 method. In other to obtain guidelines on the correct choice of parameters when numerically simulating the full reaction–diffusion models, the local dynamics of the systems are considered. The biological wave scenarios of solutions are verified by presenting some numerical results in two dimensions to mimic some spatiotemporal dynamics such as spots, stripes and spiral patterns which has a lot of ecological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alonso D, Bartumeus F, Catalan J (2002) Mutual interference between predators can give rise to turing spatial patterns. Ecology 83:28–34

    Article  Google Scholar 

  • Baeumer B, Kovacs M, Meerschaert MM (2007) Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull Math Biol 69:2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  • Baeumer B, Kovacs M, Meerschaert MM (2008) Numerical solutions for fractional reaction-diffusion equations. Comput Math Appl 55:2212–2226

    Article  MathSciNet  MATH  Google Scholar 

  • Berryman AA (1981) Population systems: a general introduction. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley, Indianapolis

    MATH  Google Scholar 

  • Cooper SB, Maini PK (2012) The mathematics of nature at the Alan Turing centenary. Interface Focus 2:393–396

    Article  Google Scholar 

  • Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176:430–455

    Article  MathSciNet  MATH  Google Scholar 

  • Crampin EJ, Gaffney EA, Maini PK (1999) Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull Math Biol 61:1093–1120

    Article  MATH  Google Scholar 

  • Crampin EJ, Gaffney EA, Maini PK (2002) Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J Math Biol 44:107–128

    Article  MathSciNet  MATH  Google Scholar 

  • Datsko B, Kutnlv M, Wloch A (2020) Mathematical modelling of pattern formation in activator-inhibitor reaction-diffusion systems with anomalous diffusion. J Math Chem 58:612–631

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (1997) An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 5:1–6

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29:3–22

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2010) The Analysis of Fractional Differential Equations: An Application-oriented Exposition using Differential Operators of Caputo type, Springer Lecture Notes in Mathematics. Springer, Berlin Heidelberg

  • Dubey B, Kumari N, Upadhyay RK (2009) Spatiotemporal pattern formation in a diffusive predator- prey system: an analytical approach. J Appl Math Comput 31:413–432

    Article  MathSciNet  MATH  Google Scholar 

  • Dulos E, Boissonade J, Perraud JJ, Rudovics B (1996) Chemical morphogenesis: turing patterns in an experimental chemical systems. Acta Biotheor 44:249–261

    Article  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:353–369

    Article  MATH  Google Scholar 

  • Gakkhar S, Naji RK (2005) Order and chaos in \(s\) food web consisting of a predator and two independent preys. Commun Nonlinear Sci Numer Simul 10:105–120

    Article  MathSciNet  MATH  Google Scholar 

  • Garrappa R, Popolizio M (2011) Generalized exponential time differencing methods for fractional order problems. Comput Math Appl 62:876–890

    Article  MathSciNet  MATH  Google Scholar 

  • Garvie M (2007) Finite-difference schemes for reaction-diffusion equations modeling predator-pray interactions in MATLAB. Bull Math Biol 69:931–956

    Article  MathSciNet  MATH  Google Scholar 

  • Garvie M, Trenchea C (2010) Spatiotemporal dynamics of two generic predator-prey models. J Biol Dyn 4:559–570

    Article  MathSciNet  MATH  Google Scholar 

  • Henry BI, Wearne SL (2000) Fractional reaction-diffusion. Phys A 276:448–455

    Article  MathSciNet  Google Scholar 

  • Henry BI, Wearne SL (2002) Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math 62:870–887

    Article  MathSciNet  MATH  Google Scholar 

  • Henry BI, Langlands TAM, Wearne SL (2005) Turing pattern formation in fractional activator-inhibitor systems. Phys Rev E 72:026101

    Article  MathSciNet  Google Scholar 

  • Hoyle RB (2006) Pattern formation: an introduction to methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kassam AK, Trefethen LN (2005) Fourth-order time-stepping for stiff PDEs. SIAM J Sci Comput 26:1214–1233

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Netherlands

    MATH  Google Scholar 

  • Kolmogorov A, Petrovsky I, Piskunov N (1937) Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem. Mosc Univ Bull Math 1:1–25

    Google Scholar 

  • Krogstad S (2005) Generalized integrating factor methods for stiff PDEs. J Comput Phys 203:72–88

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar S, Kumar A, Abbas S, Al Qurash M, Baleanu D (2020) A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations. Adv Differ Equ 2020:8

    Article  MathSciNet  Google Scholar 

  • Li CP, Wang YH (2009) Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl 57:1672–1681

    Article  MathSciNet  MATH  Google Scholar 

  • Maini PK, Painter KJ, Chau HNP (1997) Spatial pattern formation in chemical and biological systems. J Chem Soc Faraday Trans 93:3601–3610

    Article  Google Scholar 

  • McGehee EA, Peacock-López E (2005) Turing patterns in a modified Lotka–Volterra model. Phys Lett A 342:90–98

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56:80–90

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211:249–261

    Article  MathSciNet  MATH  Google Scholar 

  • Méndez V, Fedotov S, Horsthemke W (2010) Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. Springer, Heidelberg

    Book  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Morozov A, Petrovskii S (2009) Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. Bull Math Biol 71:863–887

    Article  MathSciNet  MATH  Google Scholar 

  • Murray JD (2002) Mathematical biology I: an introduction. Springer, New York

    Book  MATH  Google Scholar 

  • Murray JD (2003) Mathematical biology II: spatial models and biomedical applications. Springer, New York

    Book  MATH  Google Scholar 

  • Owolabi KM, Patidar KC (2014) Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl Math Comput 240:30–50

    MathSciNet  MATH  Google Scholar 

  • Owolabi KM, Patidar KC (2014) Numerical solution of singular patterns in one-dimensional Gray-Scott-like models. Int J Nonlinear Sci Numer Simul 15:437–462

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2015) Robust IMEX schemes for solving two-dimensional reaction-diffusion models. Int J Nonlinear Sci Numer Simul 16:271–284

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM, Patidar KC (2016) Numerical simulations of multicomponent ecological models with adaptive methods. Theor Biol Med Modell 13(1):1–25

    Article  Google Scholar 

  • Owolabi KM (2016) Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos Solitons Fractals 93:89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2016) Mathematical study of two-variable systems with adaptive Numerical methods. Numer Anal Appl 9:218–230

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2017) Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun Nonlinear Sci Numer Simul 44:304–317

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2019) Computational study of multi-species fractional reaction-diffusion system with ABC operator. Chaos Solitons Fractals 128:280–289

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2019) Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives. Neural Comput Appl 34:4093–4104

    Google Scholar 

  • Owolabi KM, Atangana A (2019) Numerical methods for fractional differentiation. Springer, Singapore

  • Owolabi KM, Karaagac B (2020) Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system. Chaos Solitons Fractals 141:110302

  • Owolabi KM, Karaagac B (2020) Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator. Chaos Solitons Fractals 136:109835

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2020) High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology. Chaos Solitons Fractals 134:109723

    Article  MathSciNet  MATH  Google Scholar 

  • Pearson JE (1993) Complex patterns in a simple system. Science 261:189–192

    Article  Google Scholar 

  • Petrovskii S, Kawasaki K, Takasu F, Shigesada N (2001) Diffusive waves, dynamic stabilization and spatio-temporal chaos in a community of three competitive species. Jpn J Ind Appl Math 18:459–481

    Article  MATH  Google Scholar 

  • Petrovskii SV, Malchow H (1999) A minimal model of pattern formation in a prey-predator system. Math Comput Modell 29:49–63

    Article  MathSciNet  MATH  Google Scholar 

  • Petrovskii SV, Malchow H (2001) Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor Popul Biol 59:157–174

    Article  MATH  Google Scholar 

  • Pindza E, Owolabi KM (2016) Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun Nonlinear Sci Numer Simul 40:112–128

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Samko S, Kilbas A, Marichev O (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  • Satnoianu RA, Menzinger M, Maini PK (2000) Turing istabilities in general systems. J Math Biol 41:493–512

    Article  MathSciNet  MATH  Google Scholar 

  • Somathilake LW, Burrage K (2018) A space-fractional-reaction-diffusion model for pattern formation in coral reefs. Cogent Math Stat 5:1426524

    Article  MathSciNet  MATH  Google Scholar 

  • Tadjeran C, Meerschaert MM (2007) A second order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220:813–823

    Article  MathSciNet  MATH  Google Scholar 

  • Tsyganov M, Biktashev V (2014) Classification of wave regimes in excitable systems with linear cross diffusion. Phys Rev E 90:062912

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis for morphogenesis. Philos Trans R Soc 237:37–72

    MathSciNet  MATH  Google Scholar 

  • Volpert V, Petrovskii S (2009) Reaction-diffusion waves in biology. Phys Life Rev 6:267–310

    Article  Google Scholar 

  • Wang W, Liu Q-X, Jin Z (2007) Spatiotemporal complexity of a ratio-dependent predator-prey system. Phys Rev E 75:051913

    Article  MathSciNet  Google Scholar 

  • Yildirim A (2009) Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem. Comput Math Appl 57:612–618

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Xing Y, Zang H, Han M (2014) Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality. Nonlinear Dyn 78:265–277

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all of the anonymous reviewers for their valuable suggestions

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Kolade M. Owolabi.

Ethics declarations

Conflict of interest

The authors have no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M., Karaagac, B. & Baleanu, D. Dynamics of pattern formation process in fractional-order super-diffusive processes: a computational approach. Soft Comput 25, 11191–11208 (2021). https://doi.org/10.1007/s00500-021-05885-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05885-0

Keywords

Navigation