Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

On distributed user-centric memetic algorithms

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A user-centric memetic algorithm (UcMA) represents an instance of the so-called interactive evolutionary computation, in which the subjacent algorithm that interacts with a human consists of a memetic algorithm (MA) that manages knowledge of the problem with the aim of accelerating the solution search process. UcMAs have been proved to be effective optimization methods to tackle problems that require human intervention (in the form of evaluations/decisions). This paper proposes two generic schemas to distribute a number of (interactive/proactive) UcMAs that act as independent agents and, eventually, synchronize to interchange information. These schemas can be instantiated via a number of parameters (including the cooperation topology) to develop novel 2-dimensional spatially structured cooperative UcMAs. These algorithms can be viewed as specific instances of the so-called parallel MAs but with the particularity that they are especially suited to dealing with combinatorial problems whose solving requires subjective evaluations. An experimental study over microarray ordering problems is done including distinct instances of an NP-hard problem with strong implications in biomedicine and molecular biology, namely the gene ordering problem. It is shown that some distributed UcMAs, especially those based on proactivity, which have been instantiated from our proposals, efficiently handle these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The adjective ‘memetic’ comes from the term ‘meme’, coined by Dawkins (1976) to denote an analogous to the gene in the context of cultural evolution—that is associated, in certain form, to the individuals’ local improvement.

  2. http://www.cs.gmu.edu/~eclab/projects/ecj/.

  3. We used the same permutation probability as the one indicated in Badillo et al. (2013).

  4. The interested reader can find this information, as well as specific details (e.g., values for the median, best result and average) on the solving of each instance, at http://www.lcc.uma.es/~afdez/UcMA_GOP/.

  5. http://moses.us.es/statservice/#.VFoyJPkrdcY.

References

  • Alizadeh AA et al (2001) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  Google Scholar 

  • Amaya JE, Cotta C, Fernández-Leiva AJ (2011) Memetic cooperative models for the tool switching problem. Memet Comput 3(3):199–216. https://doi.org/10.1007/s12293-011-0059-6

    Article  Google Scholar 

  • Arnone A, Davidson B (1997) The hardwiring of development: organization and function of genomic regulatory systems. Development 124:1851–1864

    Google Scholar 

  • Babbar M, Minsker B (2006) A collaborative interactive genetic algorithm framework for mixed-initiative interaction with human and simulated experts: a case study in long-term groundwater monitoring design. In: World environmental and water resources congress 2006

  • Badillo AR, Ruiz JJ, Cotta C, Fernández-Leiva AJ (2013) On user-centric memetic algorithms. Soft Comput 17(2):285–300. https://doi.org/10.1007/s00500-012-0893-6

    Article  Google Scholar 

  • Beck JC, Wilson N (2005) Proactive algorithms for scheduling with probabilistic durations. In Proceedings of the 19th international joint conference on artificial intelligence, IJCAI’05. San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., pp 1201–1206. http://dl.acm.org/citation.cfm?id=1642293.1642485

  • Beck JC, Wilson N (2007) Proactive algorithms for job shop scheduling with probabilistic durations. J Artif Intell Res 28(1):183–232. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Proactive+Algorithms+for+Job+Shop+Scheduling+with+Probabilistic+Durations#0

  • Ben-Dor A, Yakhini Z (1999) Clustering gene expression patterns. In: Proceedings of the ACM RECOMB’99. ACM Press, Lyon, France, pp 33–42

  • Blocho M, Czech ZJ (2013) A parallel memetic algorithm for the vehicle routing problem with time windows. In: 2013 eighth international conference on P2P, parallel, grid, cloud and internet computing (3PGCIC), pp 144–151. https://doi.org/10.1109/3PGCIC.2013.28

  • Bonissone PP, Subbu R, Eklund NHW, Kiehl TR (2006) Evolutionary algorithms \(+\) domain knowledge \(=\) real-world evolutionary computation. IEEE Trans Evol Comput 10(3):256–280

    Article  Google Scholar 

  • Bozejko W, Wodecki M (2011) The methodology of parallel memetic algorithms designing. In: Filipe J, Ana L, Fred N (eds) ICAART 2011—proceedings of the 3rd international conference on agents and artificial intelligence, volume 1—artificial Intelligence, Rome, Italy, 28–30 January 2011, SciTePress, pp 643–648. ISBN: 978-989-8425-40-9

  • Breukelaar R, Emmerich M, Bck T (2006) On interactive evolution strategies. In Rothlauf F, Branke J, Cagnoni S, Costa E, Cotta C, Drechsler R, Lutton E, Machado P, Moore J, Romero J, Smith G, Squillero G, Takagi H (eds) Applications of evolutionary computing, volume 3907 of Lecture Notes in Computer Science. Springer, pp 530–541

  • Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans Syst Man Cybern Part B 37(1):28–41. https://doi.org/10.1109/TSMCB.2006.883271

    Article  Google Scholar 

  • Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput 13(8–9):811–831. https://doi.org/10.1007/s00500-008-0357-1

    Article  Google Scholar 

  • Carlos C, David P (2009) Soft computing and cooperative strategies for optimization. Appl Soft Comput 9(1):30–38 ISSN 1568-4946

  • Chakhlevitch K, Cowling PI (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sörensen K (eds) Adaptive and multilevel metaheuristics, volume 136 of Studies in Computational Intelligence. Springer, pp 3–29. ISBN: 978-3-540-79437-0

  • Chen H, Zhu Y, Hu K, He X, Niu B (2008) Cooperative approaches to bacterial foraging optimization. In Proceedings of the 4th international conference on intelligent computing: advanced intelligent computing theories and applications—with aspects of artificial intelligence, ICIC ’08. Springer-Verlag, Berlin, Heidelberg, pp 541–548. https://doi.org/10.1007/978-3-540-85984-0_65; ISBN: 978-3-540-85983-3

  • Cotta C, Mendes A, Garcia V, França P, Moscato P (2003) Applying memetic algorithms to the analysis of microarray data. In: Raidl G et al (eds) Applications of evolutionary computing, vol 2611. Lecture Notes in Computer Science. Berlin, Springer, pp 22–32

    Chapter  Google Scholar 

  • Cotta C, Fernández-Leiva AJ (2011) Bio-inspired combinatorial optimization: notes on reactive and proactive interaction. In: Cabestany J, Rojas I, Caparrós GJ (eds) Advances in computational intelligence—11th international work-conference on artificial neural networks, Part II (IWANN 2011), volume 6692 of Lecture Notes in Computer Science. Springer, Málaga, Spain, pp 348–355

  • Cotta C, Moscato P (2003) A memetic-aided approach to hierarchical clustering from distance matrices: application to gene expression clustering and phylogeny. Biosystems 72(1–2):75-97. https://doi.org/10.1016/S0303-2647(03)00136-9; URL http://www.sciencedirect.com/science/article/pii/S0303264703001369 ISSN 0303-2647. Computational Intelligence in Bioinformatics

  • Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In Edmund B. Wilhelm E (eds) Practice and theory of automated timetabling III, volume 2079 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pp 176–190. URL http://dx.doi.org/10.1007/3-540-44629-X_11

  • Crainic TG, Gendreau M (2002) Cooperative parallel Tabu search for capacitated network design. J Heuristics 8(6):601–627. ISSN 1381-1231

  • Crainic TG, Gendreau M, Hansen P, Mladenović N (2004) Cooperative parallel variable neighborhood search for the p-median. J Heuristics 10:293–314. ISSN 1381-1231

  • Culberson J (1998) On the futility of blind search: an algorithmic view of "no free lunch". Evol Comput 6(2):109–128

    Article  Google Scholar 

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Clarendon Press, Oxford

    Google Scholar 

  • Deb K, Chaudhuri S (2007) I-mode: an interactive multi-objective optimization and decision-making using evolutionary methods. KanGal report 2007003, Kanpur genetic algorithms laboratory, 2007

  • Deb K, Kumar A (2007) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. KanGal report 2007001, Kanpur genetic algorithms laboratory, 2007

  • DeRisi JL, Lyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  Google Scholar 

  • Dias J, Captivo M, Clímaco J (2008) A memetic algorithm for multi-objective dynamic location problems. J Global Optim 42:221–253

    Article  MathSciNet  MATH  Google Scholar 

  • Dozier G (2001) Evolving robot behavior via interactive evolutionary computation: from real-world to simulation. In: 16th ACM Symposium on applied computing (SAC2001), Las Vegas, NV. ACM Press, pp 340–344

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  Google Scholar 

  • Espinar J, Cotta C, Fernández-Leiva AJ (2012) User-centric optimization with evolutionary and memetic systems. In: Ivan L, Svetozar M, Jerzy W (eds) 8th International conference on large-scale scientific computing (LSSC 2011), volume 7116 of Lecture Notes in Computer Science, Sozopol, Bulgaria. Springer, pp 214–221. ISBN: 978-3-642-29842-4

  • Fasulo D (1999) An analysis of recent work on clustering algorithms. Technical report UW-CSEO1-03-02, University of Washington, 1999

  • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180 (10): 2044–2064, May 2010. https://doi.org/10.1016/j.ins.2009.12.010. ISSN 0020-0255

  • Gong D, Yao X, Yuan J (2009) Interactive genetic algorithms with individual fitness not assigned by human. J Univers Comput Sci 15(13):2446–2462

    Google Scholar 

  • Hart WE, Belew RK (1991a) Optimizing an arbitrary function is hard for the genetic algorithm. In Belew RK, Booker LB (eds) 4\(^{th}\) international conference on genetic algorithms, San Mateo CA, 1991a. Morgan Kaufmann, pp 190–195

  • Hart WE, Belew RK (1991b) Optimizing an arbitrary function is hard for the genetic algorithm. In Belew RK, Booker LB (eds) Proceedings of the fourth international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 190–195

  • Hartuv E, Schmitt A, Lange J, Meier-Ewert S, Lehrach H, Shamir R (1999) An algorithm for clustering cDNAs for gene expression analysis. In: Proceedings of the ACM RECOMB’99, Lyon, France. ACM Press, pp 188–197

  • Houck C, Joines JA, Kay MG, Wilson JR (1997) Empirical investigation of the benefits of partial lamarckianism. Evol Comput 5(1):31–60

    Article  Google Scholar 

  • Inoue T, Furuhashi T, Fujii M, Maeda H, Takaba M (1999) Development of nurse scheduling support system using interactive ea. IEEE Int Conf Syst Man Cybern 5:533–5379

    Google Scholar 

  • Jaszkiewicz A (2004) Interactive multiple objective optimization with the pareto memetic algorithm. In Gottlieb J et al (eds) 4th EU/ME workshop: design and evaluation of advanced hybrid meta-heuristics, Nottingham, UK, 4–5 November 2004. URL http://webhost.ua.ac.be/eume/workshops/hybrid/A036Revised.pdf

  • Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902

    Article  Google Scholar 

  • Khanna R, Liu H, Chen H-H (2008) Proactive power optimization of sensor networks. In: IEEE international conference on communications (ICC), Beijing, China. IEEE, pp 2119–2123

  • Klau G, Lesh N, Marks J, Mitzenmacher M (2010) Human-guided search. J Heuristics 16:289–310. ISSN 1381-1231

  • Kosorukoff A (2001) Human-based genetic algorithm. In: 2001 IEEE international conference on systems man, and cybernetics. IEEE Press, Tucson, AZ, USA, pp 3464–3469

  • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488

    Article  Google Scholar 

  • Kubota N, Nojima Y, Sulistijono IA, Kojima F (2003) Interactive trajectory generation using evolutionary programming for a partner robot. In: 12th IEEE international workshop on robot and human interactive communication (ROMAN 2003), Millbrae, California, USA, October 2003, pp 335–340

  • LeBouthillier A, Crainic TG (2005) A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Comput Oper Res 32(7):1685–1708. https://doi.org/10.1016/j.cor.2003.11.023; URL http://www.sciencedirect.com/science/article/B6VC5-4BS0C6G-1/2/0290baf7c783e703be035d8251721dbb. ISSN 0305-0548

  • Lehmann EL, D’Abrera HJ (1998) M Nonparametrics: statistical methods based on ranks. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Lim S, Cho S-B (2005) Language generation for conversational agent by evolution of plan trees with genetic programming. In: Vicen T, Yasuo N, Sadaaki M (eds)Modeling decisions for artificial intelligence, volume 3558 of Lecture Notes in Computer Science. Springer, pp 305–315

  • Lim S, Kim K-M, Hong J-H, Cho S-B (2004) Interactive genetic programming for the sentence generation of dialogue-based travel planning system. In: 7th Asia-Pacific conference on complex systems, Cairns, Australia, 2004. Asia-Pacific workshops on genetic programming, pp 6–10

  • Lu S, Sun C (2008) Coevolutionary quantum-behaved particle swarm optimization with hybrid cooperative search. In: Computational intelligence and industrial application, 2008. PACIIA ’08. Pacific-Asia workshop on, volume 1, December 2008, pp 109–113. https://doi.org/10.1109/PACIIA.2008.137

  • Malek R (2009) Collaboration of metaheuristic algorithms through a multi-agent system. In: Mark V, Strasser T, Zoitl A (eds) Holonic and multi-agent systems for manufacturing, vol 5696. Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp 72–81

  • Mamoun MH (2010) A new proactive routing algorithm for manet. Int J Acad Res 2(2):199–204

    Google Scholar 

  • Masegosa AD, Mascia F, Pelta DA, Brunato M (2009) Cooperative strategies and reactive search: a hybrid model proposal. In Thomas S (ed) Learning and intelligent optimization, volume 5851 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pp 206–220. https://doi.org/10.1007/978-3-642-11169-3_15

  • Miho O, Hideyuki T, Kimiko O (1998) An input method using discrete fitness values for interactive ga. J Intell Fuzzy Syst 6(1):131–145

    Google Scholar 

  • Milano M, Roli A (2004) MAGMA: A Multiagent Architecture for Metaheuristics. IEEE Trans Syst Man Cybern Part B Cybern 34(2):925–941. ISSN 1083-4419

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical report caltech concurrent computation program, report. 826, California Institute of Technology, Pasadena, California, USA, 1989

  • Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, Maidenhead, pp 219–234

    Google Scholar 

  • Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic Press, Boston, pp 105–144

    Chapter  Google Scholar 

  • Moscato P, Mendes A, Cotta C (2004) Memetic algorithms. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering. Springer, Berlin, pp 53–85

    Chapter  Google Scholar 

  • Moscato P, Cotta C (2010) A modern introduction to memetic algorithms. In: Michel G, Jean-Yves P (eds) Handbook of Metaheuristics, volume 146 of International Series in Operations Research and Management Science, pages, 2nd edn. Springer, pp 141–183

  • Nalepa J, Blocho M (2016b) Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput 20(6):2309–2327. https://doi.org/10.1007/s00500-015-1642-4

    Article  Google Scholar 

  • Nalepa J, Blocho M (2015) Co-operation in the parallel memetic algorithm. Int J Parallel Program 43(5):812–839. https://doi.org/10.1007/s10766-014-0343-4. ISSN 0885-7458

  • Nalepa J, Blocho M (2016a) Temporally adaptive co-operation schemes. In: Fatos X, Leonard B, Flora A (eds) Advances on P2P, parallel, grid, cloud and internet computing, proceedings of the 11th international conference on P2P, parallel, grid, cloud and internet computing, 3PGCIC 2016, Soonchunhyang University, Asan, Korea, 5–7 November 2016., volume 1 of Lecture Notes on Data Engineering and Communications Technologies, Springer, pp 145–156. https://doi.org/10.1007/978-3-319-49109-7_14. ISBN: 978-3-319-49108-0

  • Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14

    Article  Google Scholar 

  • Neri F, Toivanen J, Mäkinen RAE (2007) An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Appl Intell 27(3):219–235. https://doi.org/10.1007/s10489-007-0069-8

    Article  Google Scholar 

  • Neri F, Cotta C, Moscato P (2012) Handbook of memetic algorithms, vol 379. Studies in Computational Intelligence. Springer, Berlin

    Book  Google Scholar 

  • Nogueras R, Cotta C (2014) An analysis of migration strategies in island-based multimemetic algorithms. In: Thomas B-B, Juergen B, Bogdan F, Jim S (eds) Problem solving from nature—PPSN XIII, volume 8672 of Lecture Notes in Computer Science, Springer International Publishing, pp 731–740. https://doi.org/10.1007/978-3-319-10762-2_72. ISBN: 978-3-319-10761-5

  • Nogueras R, Cotta C (2016) Studying self-balancing strategies in island-based multimemetic algorithms. J Comput Appl Math 293:180–191. https://doi.org/10.1016/j.cam.2015.03.047. Efficient Numerical Methods for Large-scale Scientific Computations. ISSN 0377-0427

  • Ong Y-S, Lim M-H, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B 36(1):141–152

    Article  Google Scholar 

  • Ong Y-S, Lim M-H, Chen X (2010) Memetic computation–past, present & future [research frontier]. IEEE Comp Int Mag 5(2):24–31. https://doi.org/10.1109/MCI.2010.936309

    Article  Google Scholar 

  • Özcan E, Drake JH, Altintas C, Asta S (2016) A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings. Appl Soft Comput 49(Supplement C):81–93. https://doi.org/10.1016/j.asoc.2016.07.032; URL http://www.sciencedirect.com/science/article/pii/S1568494616303672. ISSN 1568-4946

  • Parejo JA, García J, Ruiz-Cortés A, Riquelme JC (2012) Statservice: Herramienta de análisis estadístico como soporte para la investigación con metaheurísticas. In Actas del VIII Congreso Expañol sobre Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados, 2012

  • Parmee IC (2007) Human-centric evolutionary systems in design and decision-making. In: Rennard JP (ed) Handbook of research on nature-inspired computing for economics and management, IGI Global, pp 395–411

  • Parmee IC, Abraham JA (2004) User-centric evolutionary design. In: Marjanovic D (ed) 8th International design conference DESIGN 2004, decision making workshop, pp 1441–1446

  • Parmee IC, Abraham JAR, Machwe A (2008) User-centric evolutionary computing: Melding human and machine capability to satisfy multiple criteria. In: Knowles J, Corne D, Deb K, Chair DR (eds) Multiobjective problem solving from nature, natural computing series. Springer, Berlin Heidelberg, pp 263–283. ISBN: 978-3-540-72964-8

  • Pelta D, Cruz C, Sancho-Royo A, Verdegay J (2006) Using memory and fuzzy rules in a co-operative multi-thread strategy for optimization. Inf Sci 176:1849–1868

    Article  Google Scholar 

  • Puchinger J, Raidl GR (2005) Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In: Mira J, Álvarez JR (eds) First international work-conference on the interplay between natural and artificial computation, IWINAC 2005, proceedings, part II, volume 3562 of Lecture Notes in Computer Science, Las Palmas, Canary Islands, Spain. Springer, pp 41–53. https://doi.org/10.1007/11499305_5. ISBN: 3-540-26319-5

  • Quiroz JC, Banerjee A, Louis SJ (2008) Igap: interactive genetic algorithm peer to peer. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, GECCO ’08, New York, NY, USA. ACM, pp 1719–1720. https://doi.org/10.1145/1389095.1389426. ISBN: 978-1-60558-130-9

  • Quiroz JC, Louis SJ, Banerjee A, Dascalu SM (2009) Towards creative design using collaborative interactive genetic algorithms. In: IEEE congress on evolutionary computation (CEC 2009), Singapore. IEEE, pp 1849–1856

  • Sáez Y, Viñuela PI, Segovia J, Castro JH (2005) Reference chromosome to overcome user fatigue in IEC. New Gener Comput 23(2):129–142

    Article  Google Scholar 

  • Sbihi A (2010) A cooperative local search-based algorithm for the multiple-scenario max-min knapsack problem. Eur J Oper Res 202(2):339–346. https://doi.org/10.1016/j.ejor.2009.05.033; URL http://www.sciencedirect.com/science/article/B6VCT-4WF4J3B-4/2/57af628680ac07b43dfadf52f9724804. ISSN 0377-2217

  • Sudholt D (2009) The impact of parametrization in memetic evolutionary algorithms. Theor Comput Sci 410(26):2511–2528. https://doi.org/10.1016/j.tcs.2009.03.003

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi H (2000) Active user intervention in an EC search. In: 5th Joint conference on information sciences (JCIS2000). Atlantic City, NJ, pp 995–998

  • Takagi H (2015) Emergent trends in robotics and intelligent systems: where is the role of intelligent technologies in the next generation of robots? Chapter interactive evolutionary computation for analyzing human characteristics. Springer International Publishing, Cham, pp 189–195. https://doi.org/10.1007/978-3-319-10783-7_21. ISBN: 978-3-319-10783-7

  • Takagi H (2001) Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc IEEE 9:1275–1296

    Article  Google Scholar 

  • Tang J, Lim M-H, Ong Y-S (2007b) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput 11(9):873–888. https://doi.org/10.1007/s00500-006-0139-6

    Article  Google Scholar 

  • Tang J, Lim MH, Ong YS, Song LQ (2007a) Hierarchical model parallel memetic algorithm in heterogeneous computing environment. In: 2007 IEEE congress on evolutionary computation, pp 2758–2765. https://doi.org/10.1109/CEC.2007.4424820

  • Toulouse M, Crainic TG, Sanso B, Thulasiraman K (1998) Self-organization in cooperative tabu search algorithms. IEEE Int Conf Syst Man Cybern 3(2379–2384):11–14

    Google Scholar 

  • Toulouse M, Thulasiraman K, Glover F (1999) Multi-level cooperative search: a new paradigm for combinatorial optimization and an application to graph partitioning. In: Patrick A, Philippe B, Michel D, Daniel R, Iain D, Valrie F, Luc G (eds) Euro-Par’99 parallel processing, vol 1685. Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp 533–542

    Chapter  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by Junta de Andalucía (project P10-TIC-6083, DNEMESIS—http://dnemesis.lcc.uma.es/wordpress), by Ministerio Español de Economía y Competitividad (project TIN2014-56494-C4-1-P, UMA::EPHEMECH—https://ephemech.wordpress.com/ and project TIN2017-85727-C4-1-P, UMA::DEEP-BIO), and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Fernández-Leiva.

Ethics declarations

Conflict of interest

Authors Antonio J. Fernández-Leiva and Álvaro Gutiérrez-Fuentes declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Leiva, A.J., Gutiérrez-Fuentes, Á. On distributed user-centric memetic algorithms. Soft Comput 23, 4019–4039 (2019). https://doi.org/10.1007/s00500-018-3049-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3049-5

Keywords

Navigation