Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An evolutionary algorithm using spherical inversions

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper introduces an evolutionary algorithm which uses reflections and spherical inversions for global continuous optimization. Two new geometric search operators are included in the design of the algorithm: the inversion search operator and the reflection search operator. The inversion search operator computes inverse points with respect to hyperspheres, and the reflection search operator redistributes the individuals on the search space of the fitness function. The nonlinear geometric nature of the inversion search operator furnishes more “aggressive” search and exploitation capabilities for the algorithm. The performance of the algorithm is analyzed through a benchmark of 28 functions. Statistical tests show the competitive performance of the algorithm in comparison with current leading (geometric) algorithms such as particle swarm optimization and four differential evolution strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ardia D, Mullen K, Peterson B, Ulrich J, Boudt K (2016) Deoptim: global optimization by differential evolution. https://CRAN.R-project.org/package=DEoptim

  • Bonyadi MR, Michalewicz Z (2016) Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans Evol Comput 20(5):814–819

    Article  Google Scholar 

  • Bosman P, Grahl J, Thierens D (2007) Adapted maximum-likelihood Gaussian models for numerical optimization with continuous EDAs. Technical Report, Amsterdam: CWI, Amsterdam

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  • Budhraja KK, Singh A, Dubey G, Khosla A (2012) Exploration enhanced particle swarm optimization using guided re-initialization. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012), vol 1, pp 403–416

  • Cuevas E, Díaz Cortés MA, Oliva Navarro DA (2016) A states of matter algorithm for global optimization. Springer, Cham, pp 35–54

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS ’95, pp 39–43

  • Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, Chichester

    Google Scholar 

  • Ergezer M, Simon D (2015) Probabilistic properties of fitness-based quasi-reflection in evolutionary algorithms. Comput Oper Res 63:114–124

    Article  MathSciNet  MATH  Google Scholar 

  • Gong YJ, Zhou Q, Lin Y, Zhang J (2015) Orthogonal predictive differential evolution, vol 1, pp 141–154

  • Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Research Report RR-6829, INRIA

  • Hui W, Rahnamayan S, Hui S, Omran M (2013) Gaussian bare-bones differential evolution. IEEE Trans Cybern 43(2):634–647

    Article  Google Scholar 

  • Jin W (2011) Particle swarm optimization with adaptive parameter control and opposition. J Comput Inf Syst 7(12):4463–4470

    Google Scholar 

  • Moraglio A (2007) Towards a geometric unification of evolutionary algorithms. PhD Thesis, University of Essex, UK

  • Moraglio A, C Di Chio, R Poli (2007) Geometric particle swarm optimisation. Springer, Berlin

    Book  Google Scholar 

  • Moraglio A, Di Chio C, Togelius J, Poli R (2008) Geometric particle swarm optimization. J Artif Evol Appl 2008:11. doi:10.1155/2008/143624

  • Moraglio A, Johnson CG (2010) Geometric generalization of the Nelder–Mead algorithm. Springer, Berlin

    Book  Google Scholar 

  • Moraglio A, Poli R (2004) Topological interpretation of crossover. Springer, Berlin

    Book  MATH  Google Scholar 

  • Moraglio A, Togelius J (2009) Geometric differential evolution. In: Proceedings of the 11th annual conference on genetic and evolutionary computation. GECCO ’09ACM, New York, NY, USA, pp 1705–1712

  • Moraglio A, Togelius J (2009) Inertial geometric particle swarm optimization. In: IEEE congress on evolutionary computation, 2009. CEC’09. IEEE, pp 1973–1980

  • Moraglio A, Togelius J, Lucas S (2006) Product geometric crossover for the sudoku puzzle. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 470–476

  • Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization (natural computing series). Springer, New York

    MATH  Google Scholar 

  • Rosenhahn B, Sommer G (2005) Pose estimation in conformal geometric algebra. part II: real-time pose estimation using extended feature concepts. J Math Imaging Vis. Citeseer

  • Serrano-Rubio J (2016a) Spherical evolutionary algorithm. https://youtu.be/fu2vrTuNNMI

  • Serrano-Rubio J (2016b) Differential evolution. https://youtu.be/wIpBTCUce-Q

  • Sinha A, Porokka A, Malo P, Deb K (2015) Unconstrained robust optimization using a descent-based crossover operator. In: 2015 IEEE congress on evolutionary computation (CEC), pp 85–92

  • Uriarte A, Melin P, Valdez F (2016) An improved particle swarm optimization algorithm applied to benchmark functions. In: 2016 IEEE 8th international conference on intelligent systems (IS), pp 128–132

  • van den Bergh F, Engelbrecht A (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971

    Article  MathSciNet  MATH  Google Scholar 

  • Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Evolutionary computation, 2004. CEC2004. Congress on Evolutionary Computation, vol 2, pp 1980–1987

  • Xin Y, Yong L, Guangming L (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  • Xinchao Z (2010) A perturbed particle swarm algorithm for numerical optimization. Appl Soft Comput 10(1):119–124

    Article  Google Scholar 

  • Xu J, Zhang J (2014) Exploration-exploitation tradeoffs in metaheuristics: survey and analysis. In: Control conference (CCC), 2014 33rd Chinese, pp 8633–8638

Download references

Acknowledgements

This research is partially supported by a Grant of National Council of Science and Technology of Mexico CONACYT (256126). The first author would like to thank the University of Exeter for its hospitality. The third author would like to thank the International Centre for Theoretical Physics (ICTP) and the Institut Des Hautes Etudes Scientifiques (IHES) for their hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Serrano-Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano-Rubio, J.P., Hernández-Aguirre, A. & Herrera-Guzmán, R. An evolutionary algorithm using spherical inversions. Soft Comput 22, 1993–2014 (2018). https://doi.org/10.1007/s00500-016-2461-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2461-y

Keywords

Navigation